Computation Offloading Strategy for Improved Particle Swarm Optimization in Mobile Edge Computing

Author(s):  
Shun Li ◽  
Haibo Ge ◽  
Xutao Chen ◽  
Linhuan Liu ◽  
Haiwen Gong ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5540 ◽  
Author(s):  
Carla E. Garcia ◽  
Mario R. Camana ◽  
Insoo Koo

In this paper, we aim to provide reliable user connectivity and enhanced security for computation task offloading. Physical layer security is studied in a wireless-powered non-orthogonal multiple access (NOMA) mobile edge computing (MEC) system with a nonlinear energy-harvesting (EH) user and a power beacon (PB) in the presence of an eavesdropper. To further provide a friendly environment resource allocation design, wireless power transfer (WPT) is applied. The secure computation efficiency (SCE) problem is solved by jointly optimizing the transmission power, the time allocations for energy transfer, the computation time, and the central processing unit (CPU) frequency in the NOMA-enabled MEC system. The problem is non-convex and challenging to solve because of the complexity of the objective function in meeting constraints that ensure the required quality of service, such as the minimum value of computed bits, limitations on total energy consumed by users, maximum CPU frequency, and minimum harvested energy and computation offloading times. Therefore, in this paper, a low-complexity particle swarm optimization (PSO)-based algorithm is proposed to solve this optimization problem. For comparison purposes, time division multiple access and fully offloading baseline schemes are investigated. Finally, simulation results demonstrate the superiority of the proposed approach over baseline schemes.


2021 ◽  
Author(s):  
Jun Cheng ◽  
Dejun Guan

Abstract As a technology integrated with Internet of Things (IoT), mobile edge computing (MEC) can provide real-time and low latency services to the underlying network, and improve the storage and computation ability of the networks instead of central cloud infrastructure. In Mobile Edge Computing based Internet of Vehicle(MEC-IoV), the vehicle users can deliver their tasks to the associated MEC servers Based on offloading policy, which improves the resource utilization and computation performance greatly. However, how to evaluate the impact of uncertain interconnection between the vehicle users and MEC servers on offloading decision-making and avoid serious degradation of the offloading efficiency are important problems to be solved. In this paper, a task-offloading decision mechanism with particle swarm optimization for IoV-based edge computing is proposed. First, a mathematical model to calculate the computation offloading cost for cloud-edge computing system is defined. Then, the particle swarm optimization (PSO) is applied to convert the offloading of task into the process and obtain the optimal offloading strategy. Furthermore, to avoid falling into local optimization, the inertia weight factor is designed to change adaptively with the value of the objective function. The experimental results show that the proposed offloading strategy can effectively reduce the energy consumption of terminal devices while guarantee the service quality of users.


Author(s):  
Jun Cheng ◽  
Dejun Guan

AbstractAs a technology integrated with Internet of things, mobile edge computing (MEC) can provide real-time and low-latency services to the underlying network and improve the storage and computation ability of the networks instead of central cloud infrastructure. In mobile edge computing-based Internet of Vehicle (MEC-IoV), the vehicle users can deliver their tasks to the associated MEC servers based on offloading policy, which improves the resource utilization and computation performance greatly. However, how to evaluate the impact of uncertain interconnection between the vehicle users and MEC servers on offloading decision-making and avoid serious degradation of the offloading efficiency are important problems to be solved. In this paper, a task-offloading decision mechanism with particle swarm optimization for MEC-IoV is proposed. First, a mathematical model to calculate the computation offloading cost for cloud-edge computing system is defined. Then, the particle swarm optimization is applied to convert the offloading of task into the process and obtain the optimal offloading strategy. Furthermore, to avoid falling into local optimization, the inertia weight factor is designed to change adaptively with the value of the objective function. The experimental results show that the proposed offloading strategy can effectively reduce the energy consumption of terminal devices while guarantee the service quality of users.


2019 ◽  
Vol 10 (1) ◽  
pp. 203 ◽  
Author(s):  
Luan N. T. Huynh ◽  
Quoc-Viet Pham ◽  
Xuan-Qui Pham ◽  
Tri D. T. Nguyen ◽  
Md Delowar Hossain ◽  
...  

In recent years, multi-access edge computing (MEC) has become a promising technology used in 5G networks based on its ability to offload computational tasks from mobile devices (MDs) to edge servers in order to address MD-specific limitations. Despite considerable research on computation offloading in 5G networks, this activity in multi-tier multi-MEC server systems continues to attract attention. Here, we investigated a two-tier computation-offloading strategy for multi-user multi-MEC servers in heterogeneous networks. For this scenario, we formulated a joint resource-allocation and computation-offloading decision strategy to minimize the total computing overhead of MDs, including completion time and energy consumption. The optimization problem was formulated as a mixed-integer nonlinear program problem of NP-hard complexity. Under complex optimization and various application constraints, we divided the original problem into two subproblems: decisions of resource allocation and computation offloading. We developed an efficient, low-complexity algorithm using particle swarm optimization capable of high-quality solutions and guaranteed convergence, with a high-level heuristic (i.e., meta-heuristic) that performed well at solving a challenging optimization problem. Simulation results indicated that the proposed algorithm significantly reduced the total computing overhead of MDs relative to several baseline methods while guaranteeing to converge to stable solutions.


2021 ◽  
Vol 18 (6) ◽  
pp. 9163-9189
Author(s):  
Yanpei Liu ◽  
◽  
Wei Huang ◽  
Liping Wang ◽  
Yunjing Zhu ◽  
...  

<abstract> <p>The current computation offloading algorithm for the mobile cloud ignores the selection of offloading opportunities and does not consider the uninstall frequency, resource waste, and energy efficiency reduction of the user's offloading success probability. Therefore, in this study, a dynamic computation offloading algorithm based on particle swarm optimization with a mutation operator in a multi-access edge computing environment is proposed (DCO-PSOMO). According to the CPU utilization and the memory utilization rate of the mobile terminal, this method can dynamically obtain the overload time by using a strong, locally weighted regression method. After detecting the overload time, the probability of successful downloading is predicted by the mobile user's dwell time and edge computing communication range, and the offloading is either conducted immediately or delayed. A computation offloading model was established via the use of the response time and energy consumption of the mobile terminal. Additionally, the optimal computing offloading algorithm was designed via the use of a particle swarm with a mutation operator. Finally, the DCO-PSOMO algorithm was compared with the JOCAP, ECOMC and ESRLR algorithms, and the experimental results demonstrated that the DCO-PSOMO offloading method can effectively reduce the offloading cost and terminal energy consumption, and improves the success probability of offloading and the user's QoS.</p> </abstract>


Sign in / Sign up

Export Citation Format

Share Document