Energy efficient routing and bypassing energy-hole through mobile sink in WSN

Author(s):  
Ritwik Banerjee ◽  
Chandan Kr. Bhattacharyya
2013 ◽  
Vol 787 ◽  
pp. 1050-1055 ◽  
Author(s):  
Zhi Gui Lin ◽  
Hui Qi Zhang ◽  
Xu Yang Wang ◽  
Fang Qin Yao ◽  
Zhen Xing Chen

To the disadvantages, such as high energy consumption and the energy consumption imbalance, we proposed an energy-efficient routing protocol on mobile sink (MSEERP) in this paper. In the MSEERP, the network is divided into several square virtual grids based on GAF, each grid is called a cluster, and the cluster head election method of GAF is improved. In addition, the MSEERP introduces a mobile sink in the network, the sink radios in limited number of hops and uses control moving strategy, namely the sink does not collect the information until it moves to a cluster with highest residual energy. We applied NS2 to evaluate its performance and analyze the simulation results by the energy model. Simulation results show that the MSEERP balances the energy consumption of the network, saves nodes energy and extends the network lifetime.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1494 ◽  
Author(s):  
Jin Wang ◽  
Yu Gao ◽  
Wei Liu ◽  
Arun Kumar Sangaiah ◽  
Hye-Jin Kim

Recently, wireless sensor network (WSN) has drawn wide attention. It can be viewed as a network with lots of sensors that are autonomously organized and cooperate with each other to collect, process, and transmit data around targets to some remote administrative center. As such, sensors may be deployed in harsh environments where it is impossible for battery replacement. Therefore, energy efficient routing is crucial for applications that introduce WSNs. In this paper, we present an energy efficient routing schema combined with clustering and sink mobility technology. We first divide the whole sensor field into sectors and each sector elects a Cluster Head (CH) by calculating its members’ weight. Member nodes calculate energy consumption of different routing paths to choose the optimal scenario. Then CHs are connected into a chain using the greedy algorithm for intercluster communication. Simulation results prove the presented schema outperforms some similar work such as Cluster-Chain Mobile Agent Routing (CCMAR) and Energy-efficient Cluster-based Dynamic Routing Algorithm (ECDRA). Additionally, we explore the influence of different network parameters on the performance of the network and further enhance its performance.


Sign in / Sign up

Export Citation Format

Share Document