On the Impact of Multi-Channel Technology on Safety-Message Delivery in IEEE 802.11p/1609.4 Vehicular Networks

Author(s):  
Marco Di Felice ◽  
Ali J. Ghandour ◽  
Hassan Artail ◽  
Luciano Bononi
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qiong Wu ◽  
Hongmei Ge ◽  
Qiang Fan ◽  
Wei Yin ◽  
Bo Chang ◽  
...  

Various emerging vehicular applications such as autonomous driving and safety early warning are used to improve the traffic safety and ensure passenger comfort. The completion of these applications necessitates significant computational resources to perform enormous latency-sensitive/nonlatency-sensitive and computation-intensive tasks. It is hard for vehicles to satisfy the computation requirements of these applications due to the limit computational capability of the on-board computer. To solve the problem, many works have proposed some efficient task offloading schemes in computing paradigms such as mobile fog computing (MFC) for the vehicular network. In the MFC, vehicles adopt the IEEE 802.11p protocol to transmit tasks. According to the IEEE 802.11p, tasks can be divided into high priority and low priority according to the delay requirements. However, no existing task offloading work takes into account the different priorities of tasks transmitted by different access categories (ACs) of IEEE 802.11p. In this paper, we propose an efficient task offloading strategy to maximize the long-term expected system reward in terms of reducing the executing time of tasks. Specifically, we jointly consider the impact of priorities of tasks transmitted by different ACs, mobility of vehicles, and the arrival/departure of computing tasks, and then transform the offloading problem into a semi-Markov decision process (SMDP) model. Afterwards, we adopt the relative value iterative algorithm to solve the SMDP model to find the optimal task offloading strategy. Finally, we evaluate the performance of the proposed scheme by extensive experiments. Numerical results indicate that the proposed offloading strategy performs well compared to the greedy algorithm.


2017 ◽  
Vol 128 ◽  
pp. 186-196 ◽  
Author(s):  
Hossein Soleimani ◽  
Thomas Begin ◽  
Azzedine Boukerche

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3622 ◽  
Author(s):  
Jin-Woo Kim ◽  
Jae-Wan Kim ◽  
Dong-Keun Jeon

Vehicular ad hoc networks (VANETs) provide information and entertainment to drivers for safe and enjoyable driving. Wireless Access in Vehicular Environments (WAVE) is designed for VANETs to provide services efficiently. In particular, infotainment services are crucial to leverage market penetration and deployment costs of the WAVE standard. However, a low presence of infrastructure results in a shadow zone on the road and a link disconnection. The link disconnection is an obstacle to providing safety and infotainment services and becomes an obstacle to the deployment of the WAVE standard. In this paper, we propose a cooperative communication protocol to reduce performance degradation due to frequent link disconnection in the road environment. The proposed protocol provides contention-free data delivery by the coordination of roadside units (RSUs) and can provide the network QoS. The proposed protocol is shown to enhance throughput and delay through the simulation.


Author(s):  
Claudia Campolo ◽  
Hector Agustin Cozzetti ◽  
Antonella Molinaro ◽  
Riccardo M. Scopigno

2018 ◽  
Vol 32 (32) ◽  
pp. 1850398 ◽  
Author(s):  
Tenglong Li ◽  
Fei Hui ◽  
Xiangmo Zhao

The existing car-following models of connected vehicles commonly lack experimental data as evidence. In this paper, a Gray correlation analysis is conducted to explore the change in driving behavior with safety messages. The data mining analysis shows that the dominant factor of car-following behavior is headway with no safety message, whereas the velocity difference between the leading and following vehicle becomes the dominant factor when warning messages are received. According to this result, an extended car-following model considering the impact of safety messages (IOSM) is proposed based on the full velocity difference (FVD) model. The stability criterion of this new model is then obtained through a linear stability analysis. Finally, numerical simulations are performed to verify the theoretical analysis results. Both analytical and simulation results show that traffic congestion can be suppressed by safety messages. However, the IOSM model is slightly less stable than the FVD model if the average headway in traffic flow is approximately 14–20 m.


Sign in / Sign up

Export Citation Format

Share Document