An Efficient Data Hiding Method for AMBTC Compressed Images

Author(s):  
You-An Wang ◽  
Ming-Chih Chiu ◽  
Shih-Che Chien ◽  
Feng-Chia Chang ◽  
Kai-Lung Hua
Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1314 ◽  
Author(s):  
Chin-Chen Chang ◽  
Xu Wang ◽  
Ji-Hwei Horng

With the rapid development of smartphones, cloud storage, and wireless communications, protecting the security of compressed images through data transmission on the Internet has become a critical contemporary issue. A series of data hiding methods for AMBTC compressed images has been proposed to solve this problem. However, most of these methods either change the file size of the final compressed code or exchange the order of two quantization values in some blocks. To reverse this situation, this paper proposes a data hiding method for strict AMBTC format images using a hybrid strategy: replacement, matrix encoding, and symmetric quantization value embedding for three block types i.e., smooth blocks, less complex blocks and highly complex blocks. According to the hybrid strategy, an efficient data hiding order is designed to achieve higher-fidelity. Experimental results show that our proposed method provides an excellent balance between image quality and hiding capacity and has no error blocks in the final stego-compressed code.


2021 ◽  
pp. 1-11
Author(s):  
Kusan Biswas

In this paper, we propose a frequency domain data hiding method for the JPEG compressed images. The proposed method embeds data in the DCT coefficients of the selected 8 × 8 blocks. According to the theories of Human Visual Systems  (HVS), human vision is less sensitive to perturbation of pixel values in the uneven areas of the image. In this paper we propose a Singular Value Decomposition based image roughness measure (SVD-IRM) using which we select the coarse 8 × 8 blocks as data embedding destinations. Moreover, to make the embedded data more robust against re-compression attack and error due to transmission over noisy channels, we employ Turbo error correcting codes. The actual data embedding is done using a proposed variant of matrix encoding that is capable of embedding three bits by modifying only one bit in block of seven carrier features. We have carried out experiments to validate the performance and it is found that the proposed method achieves better payload capacity and visual quality and is more robust than some of the recent state-of-the-art methods proposed in the literature.


2021 ◽  
Vol 11 (15) ◽  
pp. 6741
Author(s):  
Chia-Chen Lin ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Wen-Chi Chang

Reversible data hiding has attracted significant attention from researchers because it can extract an embedded secret message correctly and recover a cover image without distortion. In this paper, a novel, efficient reversible data hiding scheme is proposed for absolute moment block truncation code (AMBTC) compressed images. The proposed scheme is based on the high correlation of neighboring values in two mean tables of AMBTC-compressed images to further losslessly encode these values and create free space for containing a secret message. Experimental results demonstrated that the proposed scheme obtained a high embedding capacity and guaranteed the same PSNRs as the traditional AMBTC algorithm. In addition, the proposed scheme achieved a higher embedding capacity and higher efficiency rate than those of some previous schemes while maintaining an acceptable bit rate.


Author(s):  
Xuejing Niu ◽  
Zhaoxia Yin ◽  
Xinpeng Zhang ◽  
Jin Tang ◽  
Bin Luo

Sign in / Sign up

Export Citation Format

Share Document