Real-time human activity-based energy management system using model predictive control

Author(s):  
Chiyang Zhong ◽  
Jingfan Sun ◽  
Jiahao Xie ◽  
Santiago Grijalva ◽  
A. P. Sakis Meliopoulos
Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3323 ◽  
Author(s):  
Bharath Rao ◽  
Friederich Kupzog ◽  
Martin Kozek

Most typical distribution networks are unbalanced due to unequal loading on each of the three phases and untransposed lines. In this paper, models and methods which can handle three-phase unbalanced scenarios are developed. The authors present a novel three-phase home energy management system to control both active and reactive power to provide per-phase optimization. Simplified single-phase algorithms are not sufficient to capture all the complexities a three-phase unbalance system poses. Distributed generators such as photo-voltaic systems, wind generators, and loads such as household electric and thermal demand connected to these networks directly depend on external factors such as weather, ambient temperature, and irradiation. They are also time dependent, containing daily, weekly, and seasonal cycles. Economic and phase-balanced operation of such generators and loads is very important to improve energy efficiency and maximize benefit while respecting consumer needs. Since homes and buildings are expected to consume a large share of electrical energy of a country, they are the ideal candidate to help solve these issues. The method developed will include typical distributed generation, loads, and various smart home models which were constructed using realistic models representing typical homes in Austria. A control scheme is provided which uses model predictive control with multi-objective mixed-integer quadratic programming to maximize self-consumption, user comfort and grid support.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2587 ◽  
Author(s):  
Zhou ◽  
FenghuaZou ◽  
Wu ◽  
Gu

This paper presents a detailed description of data predictive control (DPC) applied to a demand-side energy management system. Different from traditional model-based predictive control (MPC) algorithms, this approach introduces two model-free algorithms of artificial neural network (ANN) and random forest (RF) to make control strategy predictions on system operation, while avoiding the huge cost and effort associated with learning a grey/white box model of the physical system. The operating characteristics of electrical appliances, system energy consumption, and users’ comfort zones are also considered in the selected energy management system based on a real-time electricity pricing system. Case studies consisting of two scenarios (0% and 15% electricity price fluctuation) are delivered to demonstrate the effectiveness of the proposed approach. Simulation results demonstrate that the DPC controller based on ANN pays only 0.18% additional bill cost to maintain users’ comfort zones and system economy standardization while using only 0.096% optimization time cost compared with the MPC controller.


Sign in / Sign up

Export Citation Format

Share Document