Vibration and Noise Simulation Analysis of Stiffened Plates Based on the Statistical Energy Analysis

Author(s):  
Guo-shun Wang ◽  
Rong Fu ◽  
Liang Zhao
1986 ◽  
Vol 108 (2) ◽  
pp. 155-164 ◽  
Author(s):  
E. Goldfracht ◽  
G. Rosenhouse

In this paper we primarily discuss a theory of power transmission and vibration energy distribution of dynamically loaded structures. The loads are random and the system comprises linked elements, which consist of machine-supported stiffened plates. Fundamentally, the theory is deterministic, but in addition it uses some features of the SEA. In fact, the analysis is intended to verify fundamental theorems of the Statistical Energy Analysis in the lower frequency range.


2015 ◽  
Vol 64 (13) ◽  
pp. 134301
Author(s):  
Yin Jian-Fei ◽  
Wen Ji-Hong ◽  
Xiao Yong ◽  
Wen Xi-Sen

2017 ◽  
Vol 10 (6) ◽  
pp. 323
Author(s):  
Raffaella Di Sante ◽  
Marcello Vanali ◽  
Elisabetta Manconi ◽  
Alessandro Perazzolo

2011 ◽  
Vol 189-193 ◽  
pp. 1914-1917
Author(s):  
Lin Ji

A key assumption of conventional Statistical Energy Analysis (SEA) theory is that, for two coupled subsystems, the transmitted power from one to another is proportional to the energy differences between the mode pairs of the two subsystems. Previous research has shown that such an assumption remains valid if each individual subsystem is of high modal density. This thus limits the successful applications of SEA theory mostly to the regime of high frequency vibration modeling. This paper argues that, under certain coupling conditions, conventional SEA can be extended to solve the mid-frequency vibration problems where systems may consist of both mode-dense and mode-spare subsystems, e.g. ribbed-plates.


Wave Motion ◽  
2019 ◽  
Vol 87 ◽  
pp. 166-178 ◽  
Author(s):  
H. Li ◽  
N. Totaro ◽  
L. Maxit ◽  
A. Le Bot

Sign in / Sign up

Export Citation Format

Share Document