The impact of initial alignment on compensation for deflection of vertical in inertial navigation

Author(s):  
Junbo Tie ◽  
Meiping Wu ◽  
Juliang Cao ◽  
Junxiang Lian ◽  
Shaokun Cai
2013 ◽  
Vol 415 ◽  
pp. 143-148
Author(s):  
Li Hua Zhu ◽  
Xiang Hong Cheng

The design of an improved alignment method of SINS on a swaying base is presented in this paper. FIR filter is taken to decrease the impact caused by the lever arm effect. And the system also encompasses the online estimation of gyroscopes’ drift with Kalman filter in order to do the compensation, and the inertial freezing alignment algorithm which helps to resolve the attitude matrix with respect to its fast and robust property to provide the mathematical platform for the vehicle. Simulation results show that the proposed method is efficient for the initial alignment of the swaying base navigation system.


1960 ◽  
Vol 13 (3) ◽  
pp. 301-315
Author(s):  
Richard B. Seeley ◽  
Roy Dale Cole

This paper describes and discusses some of the techniques by which a moving inertial platform may be aligned by using external velocity measurements and also presents some of the major problems and error sources affecting such alignment. It is based upon the results of a 3-year study, of inertial and doppler-inertial navigation at the Naval Ordnance Test Station, China Lake, California, and, in general, applies to inertial navigation systems which erect to either the local level or the mass-attraction vertical. Although rudimentary derivations are made of the alignment techniques, the paper is largely nonmathematical for ease of reading. Emphasis is placed upon the major errors affecting the alignment. This paper describes and discusses some of the techniques by which a moving inertial platform may be aligned by using external velocity measurements and also presents some of the major problems and error sources affecting such alignment. It is based upon the results of a 3-year study, of inertial and doppler-inertial navigation at the Naval Ordnance Test Station, China Lake, California, and, in general, applies to inertial navigation systems which erect to either the local level or the mass-attraction vertical. Although rudimentary derivations are made of the alignment techniques, the paper is largely nonmathematical for ease of reading. Emphasis is placed upon the major errors affecting the alignment.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Sun ◽  
Wenjun Yi ◽  
Dandan Yuan ◽  
Jun Guan

The purpose of this paper is to present an in-flight initial alignment method for the guided projectiles, obtained after launching, and utilizing the characteristic of the inertial device of a strapdown inertial navigation system. This method uses an Elman neural network algorithm, optimized by genetic algorithm in the initial alignment calculation. The algorithm is discussed in details and applied to the initial alignment process of the proposed guided projectile. Simulation results show the advantages of the optimized Elman neural network algorithm for the initial alignment problem of the strapdown inertial navigation system. It can not only obtain the same high-precision alignment as the traditional Kalman filter but also improve the real-time performance of the system.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2921 ◽  
Author(s):  
Jie Sui ◽  
Lei Wang ◽  
Tao Huang ◽  
Qi Zhou

The gyroscope, accelerometer and angular encoder are the most important components in a dual-axis rotation inertial navigation system (RINS). However, there are asynchronies among the sensors, which will thus lead to navigation errors. The impact of asynchrony between the gyroscope and angular encoder on the azimuth error and the impact of asynchrony between the gyroscope and accelerometer on the velocity error are analyzed in this paper. A self-calibration method based on navigation errors is proposed based on the analysis above. Experiments show that azimuth and velocity accuracy can be improved by compensating the asynchronies.


Sign in / Sign up

Export Citation Format

Share Document