An Efficient Islanding Classification Technique for Single Phase Grid Connected Photovoltaic System

Author(s):  
Mohammed Ali Khan ◽  
Ahteshamul Haque ◽  
V.S. Bharath Kurukuru
2017 ◽  
Vol 138 ◽  
pp. 1177-1183 ◽  
Author(s):  
N. Prabaharan ◽  
A. Rini Ann Jerin ◽  
K. Palanisamy ◽  
S. Umashankar

2019 ◽  
Vol 8 (4) ◽  
pp. 2814-2822

This paper projects a high performance decoupled current control using a dq synchronous reference frame for single-phase inverter. For the three-phase inverter the conversion from AC to DC with Proportional Integral controller grants to obtain steady state error for AC Voltages and currents but has a few challenges with the single-phase systems. Hence, an orthogonal pair (β) is created by shifting the phase by one quarter cycle with respect to the real component (α) which is needed for the transformation from stationary to rotating frame. The synchronous reference frame control theory helps in controlling the AC voltage by using DC signal as the reference with the proportional integrator controllers. The implementation of the control is done with two-stage converter with LCL filter for a single-phase photovoltaic system. A modified MPPT Incremental conductance algorithm along with decoupled current control helps in regulating the active and reactive power infused into the grid where the power factor is improved, the efficiency of the system is increased above 95% and total harmonic distortion for current is also reduced to3%. The results have been validated using MATLAB.


Author(s):  
P. Bhaskara Prasad ◽  
M. Padma Lalitha ◽  
B. Sarvesh

<span lang="EN-US">Recently, Re-boost seven-level inverter has been developed as an alternative between Photovoltaic system and single-phase load. DC level is increased using a re-boost regulator and its output is rehabilitated into single-phase AC utilizing a seven-level inverter. The re-boost converter is utilized to escalate the voltage gain. The objective of the suggested closed loop Re-boost Seven Level Inverter fed Induction Motor (RBSLIIM) system is to enhance the dynamic response of RBSLIIM using FO-P-I-D controller. Simulink models are developed for P-I and FO-P-I-D controlled RBSLIIM systems. The results of P-I and FO-P-I-D based RBSLIIM systems indicate that the voltage response with FO-P-I-D is superior to P-I controlled RBSLIIM system.</span>


Sign in / Sign up

Export Citation Format

Share Document