Neural network & genetic algorithm based approach to network intrusion detection & comparative analysis of performance

Author(s):  
B. Pal ◽  
M. A. M. Hasan
2014 ◽  
Vol 599-601 ◽  
pp. 726-730 ◽  
Author(s):  
Gang Ke ◽  
Ying Han Hong

The traditional BP neural network algorithm is applied to intrusion detection system, detection speed slow and low detection accuracy. In order to solve the above problems, this paper proposes a network intrusion detection algorithm using genetic algorithms to optimize neural network weights. which find the most suitable weights of BP neural network by the genetic algorithm, and uses the optimized BP neural network to learn and detect the network intrusion detection data. Matlab simulation results show that the training sample time of the algorithm is shorter, has good intrusion recognition and detection effect, compared with the traditional network intrusion detection algorithm.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 834
Author(s):  
Muhammad Ashfaq Khan

Nowadays, network attacks are the most crucial problem of modern society. All networks, from small to large, are vulnerable to network threats. An intrusion detection (ID) system is critical for mitigating and identifying malicious threats in networks. Currently, deep learning (DL) and machine learning (ML) are being applied in different domains, especially information security, for developing effective ID systems. These ID systems are capable of detecting malicious threats automatically and on time. However, malicious threats are occurring and changing continuously, so the network requires a very advanced security solution. Thus, creating an effective and smart ID system is a massive research problem. Various ID datasets are publicly available for ID research. Due to the complex nature of malicious attacks with a constantly changing attack detection mechanism, publicly existing ID datasets must be modified systematically on a regular basis. So, in this paper, a convolutional recurrent neural network (CRNN) is used to create a DL-based hybrid ID framework that predicts and classifies malicious cyberattacks in the network. In the HCRNNIDS, the convolutional neural network (CNN) performs convolution to capture local features, and the recurrent neural network (RNN) captures temporal features to improve the ID system’s performance and prediction. To assess the efficacy of the hybrid convolutional recurrent neural network intrusion detection system (HCRNNIDS), experiments were done on publicly available ID data, specifically the modern and realistic CSE-CIC-DS2018 data. The simulation outcomes prove that the proposed HCRNNIDS substantially outperforms current ID methodologies, attaining a high malicious attack detection rate accuracy of up to 97.75% for CSE-CIC-IDS2018 data with 10-fold cross-validation.


Sign in / Sign up

Export Citation Format

Share Document