Ant colony optimization algorithm based optimal reactive power dispatch to improve voltage stability

Author(s):  
K. Rayudu ◽  
G. Yesuratnam ◽  
A. Jayalaxmi
2017 ◽  
Vol 2 (6) ◽  
pp. 27 ◽  
Author(s):  
Rayudu Katuri ◽  
Guduri Yesuratnam ◽  
Askani Jayalaxmi

One of the important tasks of a power system engineer is to run the system in safe and reliable mode for secure operation with increase in loading. So, it is significant to perform voltage stability analysis by optimal reactive power dispatch with Artificial Intelligence (AI) techniques. This paper presents the application of Ant Colony Optimization (ACO) and BAT algorithms for Optimal Reactive Power Dispatch (ORPD) to enhance voltage stability. The proposed ACO and BAT algorithms are used to find the optimal settings of On-load Tap changing Transformers (OLTC), Generator excitation and Static Var Compensators (SVC) to minimize the sum of the squares of the voltage stability L– indices of all the load buses. By calculating system parameters like L-Index, voltage error/deviation and real power loss for the practical Equivalent of Extra High Voltage (EHV) Southern Region Indian 24 bus system, voltage profile is improved and voltage stability is enhanced. A comparative analysis is done with the conventional optimization technique like Linear Programming (LP) for the given objective function to demonstrate the effectiveness of proposed ACO and BAT algorithms. 


2018 ◽  
Vol 6 (11) ◽  
pp. 355-365
Author(s):  
K. Lenin

In this paper optimal reactive power dispatch problem (ORPD), has been solved by Enriched Red Wolf Optimization (ERWO) algorithm. Projected ERWO algorithm hybridizes the wolf optimization (WO) algorithm with swarm based algorithm called as particle swarm optimization (PSO) algorithm. In the approach each Red wolf has a flag vector, and length is equivalent to the whole sum of numbers which features in the dataset of the wolf optimization (WO). Exploration capability of the projected Red wolf optimization algorithm has been enriched by hybridization of both WO with PSO. Efficiency of the projected Enriched Red wolf optimization (ERWO) evaluated in standard IEEE 30 bus test system. Simulation study indicates Enriched Red wolf optimization (ERWO) algorithm performs well in tumbling the actual power losses& particularly voltage stability has been enriched.


2020 ◽  
Vol 53 (1-2) ◽  
pp. 239-249 ◽  
Author(s):  
Pradeep Panthagani ◽  
R Srinivasa Rao

Optimal reactive power dispatch is one of the key factors to attain cost-effective and stable functioning of power system. It is a complicated non-linear optimization issue with a combination of discrete and continuous control variables. Due to this complex feature of optimal reactive power dispatch, optimization technique has become an efficient method to solve this problem. In this work, Kinetic Gas Molecule Optimization algorithm with Pareto optimality is proposed for solving multi-objective optimal reactive power dispatch problem. The presentation of Kinetic Gas Molecule Optimization is improved by computing inertia weight and acceleration coefficients dynamically rather than a fixed value. Because of this reason, the searching capability of the particles in each iteration is improved. However, to improve the power system performance in optimal reactive power dispatch scenario, additional flexible AC transmission system devices like static VAR compensator, thyristor-controlled series compensator, and unified power flow controller are introduced to provide stable results when compared to conventional output because flexible AC transmission system devices are capable of controlling the flow of real power and reactive power. These details are implemented and tested on IEEE 30-bus test system with various objectives. The performance of proposed method is validated from MATLAB, which shows the value of power loss as 4.3583 and voltage deviation as 0.26499 with cost of US$469.6417 per MVAR, which shows considerably superior results when compared with implemented particle swarm optimization results. The proposed method provides an efficient result for solving multi-objective optimal reactive power dispatch issues.


2018 ◽  
Vol 7 (3.15) ◽  
pp. 1
Author(s):  
Nabil Fikri Ruslan ◽  
Ismail Musirin ◽  
Mohamad Khairuzzaman Mohamad Zamani ◽  
Muhammad Murtadha Othman ◽  
Zulkiffli Abdul Hamid ◽  
...  

General power flow studies do not manage to trace the contributors by generators on power losses in the whole power transmission system. Thus, power tracing approach is utilized to address this issue. Power tracing is a termed used to describe the contributors for the power losses dissipated on the transmission line. The traditional technique made use the knowledge of circuit analysis such as cut set theory. However, there was no element of optimization which can help to achieve the optimal solution. This paper presents the power tracing monitoring during voltage stability improvement process, implemented by optimal reactive power dispatch. In this study, the impact of power tracing on voltage stability variation was investigated. Evolutionary Programming (EP) was developed and utilized to incorporate power tracing, along with voltage stability improvement. A pre-developed scalar voltage stability index was incorporated to indicate the voltage stability condition. On the other hand, the voltage stability initiative was conducted via the optimal reactive power dispatch. The power tracing was monitored for both; the pre-optimization and post-optimization scenarios. Small system model was tested to realize the power tracing phenomenon, which is rather rare study in power system community. Results on power tracing obtained during the pre- and post-optimal reactive power dispatch revealed that not all generators will involve in the contribution on the total transmission loss in the system. This can be beneficial to power system operators for allocating the cost without discrimination in the long run.   


Sign in / Sign up

Export Citation Format

Share Document