scholarly journals ICDAR 2019 CROHME + TFD: Competition on Recognition of Handwritten Mathematical Expressions and Typeset Formula Detection

Author(s):  
Mahshad Mahdavi ◽  
Richard Zanibbi ◽  
Harold Mouchere ◽  
Christian Viard-Gaudin ◽  
Utpal Garain
Friction ◽  
2021 ◽  
Author(s):  
Kevin Lontin ◽  
Muhammad Khan

AbstractPhenomena of friction, wear, and noise in mechanical contacts are particularly important in the field of tribomechanics but equally complex if one wants to represent their exact relationship with mathematical models. Efforts have been made to describe these phenomena with different approaches in past. These efforts have been compiled in different reviews but most of them treated friction, wear mechanics, and acoustic noise separately. However, an in-depth review that provides a critical analysis on their interdependencies is still missing. In this review paper, the interdependencies of friction, wear, and noise are analysed in the mechanical contacts at asperitical level. The origin of frictional noise, its dependencies on contact’s mechanical properties, and its performance under different wear conditions are critically reviewed. A discussion on the existing mathematical models of friction and wear is also provided in the last section that leads to uncover the gap in the existing literature. This review concludes that still a comprehensive analytical modelling approach is required to relate the interdependencies of friction, noise, and wear with mathematical expressions.


1987 ◽  
Vol 109 (4) ◽  
pp. 487-490 ◽  
Author(s):  
Hong-Sen Yan ◽  
Frank Harary

One of the major steps in the development of a systematic design methodology for the creative design of vehicle mechanisms is to obtain all possible link assortments, and then to generate the catalogs of kinematic chains. If the generalized mathematical expressions for the maximum value M of the maximum number of joints incident to a link of kinematic chains with N links and J joints can be derived, the process of solving link assortments can be more systematic. Using elementary concepts of graph theory, we derived explicit relationships for M for two regions of the J-N plane.


2014 ◽  
Vol 658 ◽  
pp. 261-268
Author(s):  
Jean Louis Ntakpe ◽  
Gilbert Rainer Gillich ◽  
Florian Muntean ◽  
Zeno Iosif Praisach ◽  
Peter Lorenz

This paper presents a novel non-destructive method to locate and size damages in frame structures, performed by examining and interpreting changes in measured vibration response. The method bases on a relation, prior contrived by the authors, between the strain energy distribution in the structure for the transversal vibration modes and the modal changes (in terms of natural frequencies) due to damage. Using this relation a damage location indicator DLI was derived, which permits to locate cracks in spatial structures. In this paper an L-frame is considered for proving the applicability of this method. First the mathematical expressions for the modes shapes and their derivatives were determined and simulation result compared with that obtained by finite element analysis. Afterwards patterns characterizing damage locations were derived and compared with measurement results on the real structure; the DLI permitted accurate localization of any crack placed in the two structural elements.


Geophysics ◽  
1984 ◽  
Vol 49 (4) ◽  
pp. 398-410 ◽  
Author(s):  
D. P. Blair

Fourier‐Bessel theory is used to derive filters representing the influence of both empty and fluid‐filled cylindrical boreholes on particle motion induced in rock by a plane P-wave incident perpendicular to the borehole axis. For wavelengths greater than 10 times the borehole circumference, the effect of the borehole on particle motions is shown to be negligible; thus the results have little relevance for the long wavelengths commonly encountered in earthquake seismology. The results are, however, relevant to the study of stress wave propagation at ultrasonic frequencies in rock masses. For small wavelengths (αa > 3.0) the filter representing particle motion on the wave incident site of an empty borehole reduces to a linear phase filter which increases all amplitudes by a factor of 2 while the filter representing fluid stress at the center of a fluid‐filled borehole may be reduced to simple mathematical expressions. Experimental results were obtained for the interaction of a stress wave with either accelerometers mounted in an empty borehole or a hydrophone located centrally in a fluid‐filled borehole. Both theory and experiment show a similar distortion in the rise time of the pulse traveling past the borehole.


2021 ◽  
pp. 107754632110128
Author(s):  
K Renji

Realistic joints in a spacecraft structure have clearances at the interfacing parts. Many such systems can be considered to be having bilinear stiffness. A typical example is the propellant tank assembled with the structure of a spacecraft. However, it is seen that the responses of such systems subjected to base excitation are rarely reported. In this work, mathematical expressions for theoretically estimating the amplitude of its response, the frequency at which the response is the maximum and the maximum response when it is subjected to base sine excitation are derived. Several experiments are conducted on a typical such system subjecting it to different levels of base sine excitation. The frequency at which the response is the maximum reduces with the magnitude of excitation. The expressions derived in this work can be used in estimating the amplitudes of responses and their characteristics reasonably well.


Sign in / Sign up

Export Citation Format

Share Document