Design and Development for Smart Home Control System Based on WeChat Platform

Author(s):  
Tongcheng Huang ◽  
Xiao Liang ◽  
Liang Ronglong ◽  
Wang Zhiqi
Author(s):  
Gustavo Poot Tah ◽  
Erika Llanes Castro ◽  
José Luis López Martínez ◽  
Victor Chi Pech

This paper presents the design and development of a mobile application that uses QR codes for the inventory control of a computer center. This application was developed to support the administration of the computer center of the Multidisciplinary Unit Tizimin, with the aim to reduce costs and time of searching for articles when making an inventory, by leveraging the capabilities of smartphones and tablets. The implementation of the system was carried out using free software.


2021 ◽  
Vol 2 (6) ◽  
Author(s):  
Peng Zhao ◽  
Pushpendu Kar ◽  
Saeid Pourroostaei Ardakani

2011 ◽  
Vol 71-78 ◽  
pp. 4261-4264
Author(s):  
Ru Wang ◽  
San Yuan Tang ◽  
Wei Xin Sun

According that town plan is mainly drawn with software AutoCAD, this article realizes to automatically select a shortest transport route on urban road and dynamically display traffic flow based on VC++ and ObjectARX and lays a foundation for future development taking traffic limit, traffic conditions and other complex conditions into account.


The paper presents a design and development of a multi-station automated hand-washing system (MSAHWS) that could be integrated into overall solution strategies for combating the threat of SARS-Cov-2 infections and minimizing the health and economic devastation the virus spread can inflict. The researchers seek to create a system that uses a single micro-controller and caters to several users, each of them being served independently of each other. The MSAHWS development follows a four-part methodology: formulation of the sanitary, operational, manufacturing and economic requirements; design, modeling, and simulation of the micro-controller-based control system; MSAHWS hardware prototype development; and system test and data collection. The MSAHWS design and development focuses on a double-station system that uses a single Arduino Uno, an ultrasonic sensor for each station, 4 FET’s, 4 liquid pumps, a water tank, a soap reservoir, a power supply and a frame to house the system. The non-contact system eliminates possible viral transmission from one person to another via the hand washing machine yet ensures the required cleanliness of the hands. The system is first simulated in PROTEUS to test its functionality and responses based on the demanded or required criteria. A prototype is then built to test and verify the system’s actual operation and responses and thence to make the necessary adjustment of parameters to realize an acceptable performance level. Tests show that all the requirements are met. Photos of the built and tested prototype, a diagram of the initial system design concept, a screen capture of the control system software model, a schematic diagram of the control system, a sketch with dimensions of the hand washing machine frame or housing, and the flowchart on which the Arduino script is developed. The operation and user-interaction of the actual system is also described. The control system program is written such that the resulting hand washing activity complies with the WHO standard on hand washing duration and makes entirely possible a complete and hygienic hand washing activity with soap and water. The system is envisioned for strategic deployment in public and private areas like public markets, banks, hospitals, schools, offices, residences, and many others. Revised Manuscript Received on August 05, 2020. * Correspondence Author Jolan Baccay Sy, School of Electrical and Computer Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha Ethiopia. E-mail: [email protected] Marlon Gan Rojo School of Electrical and Computer Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha Ethiopia. Email: [email protected] Eunelfa Regie Calibara School of Electrical and Computer Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha Ethiopia. E-mail: [email protected] Alain Vincent Comendador, School of Mechanical and Chemical Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha, Ethiopia. Email: [email protected] Wubishet Degife School of Mechanical and Chemical Engineering, Wollo University Kombolcha Institute of Technology, Kombolcha, Ethiopia. E-mail: [email protected] Asefa Sisay Yimer Lecturer, Department of Electrical and Computer Engineering, Kombolcha Institute of Technology, Wollo University, Ethiopia. The paper has shown that it is possible to control multiple hand washing stations, each acting independently of each other, using a single micro-controller and a proper control system programming.


Author(s):  
Andrey Mozohin

Analysis of the application of smart home technology indicates an insufficient level of controllability of its infrastructure, which leads to excessive consumption of energy and information resources. The problem of managing the digital infrastructure of human living space, is associated with a large number of highly specialized solutions for home automation, which complicate the management process. Smart home is considered as a set of independent cyber-physical devices aimed at achieving its goal. For coordinated work of cyber-physical devices it is proposed to provide their joint work through a single information center. Simulation of device operation modes in a digital environment preserves the resource of physical devices by making a virtual calculation for all possible variants of interaction of devices between themselves and the physical environment. A methodology for controlling the microclimate of a smart home using an ensemble of fuzzy artificial neural networks is developed, with the example of joint use of air conditioning, ventilation and heating. The neural network algorithm allows you to monitor the parameters of the physical environment, predict the modes of cyber-physical devices and generate control signals for each of them, ensuring the joint operation of devices with minimal resource consumption and information traffic. A variant of practical implementation of a smart home climate control system on the example of a multifunctional educational computer class is proposed. Hybrid neural networks of air conditioning, ventilation and heating systems were developed. The testing of the microclimate control system of a multifunctional university classroom using hybrid neural networks was carried out, a programmable logic controller of domestic production was used as a control device. The goal of management based on cooperating cyber-physical devices is to achieve a minimum of power and information traffic when they work together.


Sign in / Sign up

Export Citation Format

Share Document