An Improved Lateral Vibration Suppression Strategy of the High-speed Train Using Repetitive Learning Control

Author(s):  
Chunrong Chen ◽  
Duo Zhao ◽  
Deqing Huang ◽  
Qichao Tang
Author(s):  
Zhiying He ◽  
Chunjun Chen ◽  
Dongwei Wang ◽  
Chao Deng ◽  
Jia Hu ◽  
...  

Based on the characteristics that the tunnel pressure wave has a fixed-morphologic form when the same train passes through the same tunnel, an applicational approach based on the iterative learning control (ILC) is developed, aiming at overcoming the drawbacks of the traditional strategy for controlling the air pressure variation inside a high-speed train carriage. To achieve the goal, the control system is mathematically modelled. Then, the problem is formulated. The task of suppressing the influence of the tunnel pressure wave on the air pressure inside the carriages is shifted as an ILC problem of tracking the comfort index with varying trial length. The algorithm of refreshing the control signal from trial to trial is determined and the process of ILC control is designed. Next, the convergence of the newly-developed applicational ILC algorithm is discussed and the algorithm is simulated by the simulation signal and field-test signal. Results show that the applicational ILC algorithm be more adaptable in handling the control of the air pressure inside carriage under the excitation of varying-amplitude, varying-scale and varying-initial-states tunnel pressure wave. Meanwhile, the matching with tunnel pressure wave makes the applicational ILC algorithm will take both the riding comfort and fresh air into consideration, which upgrades the performances when the high-speed train passing through long tunnels.


Author(s):  
H Fujimoto ◽  
M Miyamoto

From the vibration data obtained simultaneously on several cars in the same Shinkansen train, it was observed that the vibration amplitude of the tail car is greater than those of the other cars in a train. The authors' analysis arrived at the conclusion that the vibration mode of a train has a tendency for the tail car to vibrate more than the others, when the carbody hunting characteristics of a train for the yawing mode are likely to emerge, and when aerodynamic forces work in a tunnel section. Referring to those results, by simulation analysis etc., it was found that two longitudinal dampers installed parallel between the car ends (Fig. 1) with their forces depending on the angular velocity between cars, are effective in decreasing the train vibration including the tail car's vibration. Then, the prototype of the longitudinal dampers between the cars for Shinkansen was designed by obtaining the proper damping coefficient through simulation. The effectiveness of the installed damper was verified when it was tested up to 310 km/h in the Shinkansen train.


2020 ◽  
Vol 31 (10) ◽  
pp. 4094-4103 ◽  
Author(s):  
Deqing Huang ◽  
Chunrong Chen ◽  
Tengfei Huang ◽  
Duo Zhao ◽  
Qichao Tang

2013 ◽  
Vol 753-755 ◽  
pp. 1795-1799 ◽  
Author(s):  
Xiao Wei Huang ◽  
Yan Ying Zhao

In order to suppress the lateral vibration of high-speed train caused by track irregularity, the delayed feedback control is employed to suppress the vibration of the semi-active suspension system. The 1/4 vehicle mathematical model of semi-active suspension system is established. The amplitude of the bodys lateral vibration is large at some values of external excitation frequency for the passive suspension system, and it could be suppressed at some values of time delay, while the vibration of the bodys lateral vibration may be deteriorated at other values of time delay. The results show that the amplitude of the bodys lateral vibration could be suppressed about 50% when the suitable values of damping coefficient and time delay are chosen by comparing with the passive suspension system. The analytical results of this paper are in good agreement with the numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document