Robust H∞ fault-tolerant control of control systems with sensor failure based on state observer

Author(s):  
Zhou Shao-wu ◽  
Zhou Jun-yu ◽  
Yuan Yi-zhen
Author(s):  
Muhammad Sohail Khan Raja ◽  
Qasim Ali

The Flight Control System (FCS) is considered as the brain of an aerial vehicle. It is a mechanism through which pilot’s commands are transferred to the actuators of the aircraft control surfaces. In order to ensure safety and increase reliability of aerial vehicles, development of fault tolerant FCSs has been the focus of research community for past few decades. Fault tolerant ability enables an aircraft to maintain satisfactory performance even in the state of a fault. Fault Tolerant Control Systems (FTCS) are categorized as passive and active control systems. Passive FTCS are designed to mitigate the effects of certain known faults. These faults can be related to sensor failure, actuator failure, or system component failure. On the other hand, active FTCS contain a controller reconfiguration mechanism, whereby, they can adjust the controller input online to mitigate the effects of the faults. In this way, they can accommodate complicated and versatile faults as compared to their passive counterparts. This paper presents a review of significant research during last decade in active fault tolerant control with applications to FCSs. A review of state-of-the-art works in this domain has also been presented. Upon review, these state-of-the-art research interests have been categorized into respective categories. Furthermore, research works have been cataloged based on their technology readiness levels. Based on these reviews, future research directions have also been highlighted.


Author(s):  
M O T Cole ◽  
P S Keogh ◽  
C R Burrows

Magnetic bearings now exist in a variety of industrial applications. However, there are still concerns over the control integrity of rotor/magnetic bearing systems and the ability of control systems to cope with possible faults that can occur during operation. Unless control systems can be developed that have the ability to maintain safe operation when the system is in a degraded or faulty state, then many, otherwise viable, magnetic bearing applications will remain unfulfilled. In this paper, a method is proposed for the design of a fault-tolerant control system that can detect and identify both incipient and sudden faults as and when they occur. A multivariable H∞ controller is reconfigured on occurrence of a fault so that stability and performance is maintained. A neural network is trained to identify faults associated with the system position transducer measurements so that the output from the neural network can be used as the decision tool for reconfiguring control. In this way, satisfactory control of the system can be maintained during failure of a control input. The method requires no knowledge of the system dynamics or system disturbances, and the network can be trained on-line. The validity of this method is demonstrated experimentally for various modes of sensor failure.


2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.


Heliyon ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. e04799
Author(s):  
Leony Ortiz ◽  
Jorge W. González ◽  
Luis B. Gutierrez ◽  
Orestes Llanes-Santiago

Sign in / Sign up

Export Citation Format

Share Document