A hysteresis current control method for active power filter with lower switching losses

Author(s):  
Jiang Zeng ◽  
Zaitian Zheng ◽  
Andong Lang ◽  
Zhipeng Gu ◽  
Zhicheng Wu ◽  
...  
2014 ◽  
Vol 1030-1032 ◽  
pp. 1423-1431
Author(s):  
Jiang Zeng ◽  
Li Peng Huang

This paper presents a new hysteresis current control method for APF(active power filter) that can reduce switching losses effectively by means of adjusting the hysteresis band width according to the current size. On one hand, this method adjust the overall hysteresis band width according to the size of absolute norm of three-phase current that optimize the overall switching frequency, reduce the total switching losses effectively. On the other hand, it adjust hysteresis band width of each phase by comparing the output reference current to reduce the switching times which switching losses is larger, while increasing the switching frequency which switching losses is smaller, so as to maintain overall control precision. Computer simulation is conducted on an electromagnetic transient program. The results show that the new method can effectively reduce the switching losses under the same control accuracy and total switching frequency.


Author(s):  
Rahimi Baharom ◽  
Ihsan Mohd Yassin ◽  
Nabil Hidayat

<span lang="EN-US">This paper presents the Hysteresis Current Control (HCC) to improve the power quality of power electronic converters. The development of HCC was implemented using Active Power Filter (APF) function based on rectifier boost technique to control the range of upper and lower bands. Through this technique, the supply current waveform followed the shape of the sinusoidal reference signal, thus, the distorted input current waveform becomes sinusoidal and in the same phase with the input voltage. As a result, the THD level and switching losses can be reduced, thus improving the power factor of the power supply system. In order to verify the proposed operation, validation of the proposed HCC was done through MATLAB. Selected simulation results are presented.</span>


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1951
Author(s):  
Mihaela Popescu ◽  
Alexandru Bitoleanu ◽  
Mihaita Linca ◽  
Constantin Vlad Suru

This paper presents the use of a three-phase four-wire shunt active power filter to improve the power quality in the Department of Industrial Electronics of a large enterprise from Romania. The specificity is given by the predominant existence of single-phase consumers (such as personal computers, printers, lighting and AC equipment). In order to identify the power quality indicators and ways to improve them, an A-class analyzer was used to record the electrical quantities and energy parameters in the point of common coupling (PCC) with the nonlinear loads for 27 h. The analysis shows that, in order to improve the power quality in PCC, three goals must be achieved: the compensation of the distortion power, the compensation of the reactive power and the compensation of the load unbalance. By using the conceived three-leg shunt active power filter, controlled through the indirect current control method in an original variant, the power quality at the supply side is very much improved. In the proposed control algorithm, the prescribed active current is obtained as a sum of the loss current provided by the DC voltage and the equivalent active current of the unbalanced load. The performance associated with each objective of the compensation is presented and analyzed. The results show that all the power quality indicators meet the specific standards and regulations and prove the validity of the proposed solution.


2013 ◽  
Vol 385-386 ◽  
pp. 1224-1228
Author(s):  
Yun Liang Wang ◽  
Qi Liang Guo

In this paper, the hysteresis current control (HCC) technique based on space vector modulation (SVM) for active power filter (APF) is proposed. The switching control algorithms of the HCC based SVM manage to generate compensated current according to the reference current. Harmonics extraction is calculated for the power compensation based on the instantaneous active and reactive power theorem in time domain. A closed loop control system is carried out and the APF manages to generate better compensated harmonics currents to the power grid.


Sign in / Sign up

Export Citation Format

Share Document