WINNER: a high speed high energy efficient Neural Network implementation for image classification

Author(s):  
Simone Domenico Antonietta ◽  
Andrea Coluccio ◽  
Giovanna Turvani ◽  
Marco Vacca ◽  
Mariagrazia Graziano ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2828
Author(s):  
Mhd Rashed Al Koutayni ◽  
Vladimir Rybalkin ◽  
Jameel Malik ◽  
Ahmed Elhayek ◽  
Christian Weis ◽  
...  

The estimation of human hand pose has become the basis for many vital applications where the user depends mainly on the hand pose as a system input. Virtual reality (VR) headset, shadow dexterous hand and in-air signature verification are a few examples of applications that require to track the hand movements in real-time. The state-of-the-art 3D hand pose estimation methods are based on the Convolutional Neural Network (CNN). These methods are implemented on Graphics Processing Units (GPUs) mainly due to their extensive computational requirements. However, GPUs are not suitable for the practical application scenarios, where the low power consumption is crucial. Furthermore, the difficulty of embedding a bulky GPU into a small device prevents the portability of such applications on mobile devices. The goal of this work is to provide an energy efficient solution for an existing depth camera based hand pose estimation algorithm. First, we compress the deep neural network model by applying the dynamic quantization techniques on different layers to achieve maximum compression without compromising accuracy. Afterwards, we design a custom hardware architecture. For our device we selected the FPGA as a target platform because FPGAs provide high energy efficiency and can be integrated in portable devices. Our solution implemented on Xilinx UltraScale+ MPSoC FPGA is 4.2× faster and 577.3× more energy efficient than the original implementation of the hand pose estimation algorithm on NVIDIA GeForce GTX 1070.


Author(s):  
Chenggang Yuan ◽  
Min Pan ◽  
Andrew Plummer

Abstract Digital hydraulics is a new technology providing an alternative to conventional proportional or servovalve-controlled systems in the area of fluid power. Digital hydraulic applications, such as digital pumps, digital valves and actuators, switched inertance hydraulic converters (SIHCs), and digital hydraulic power management systems, promise high-energy efficiency and less contamination sensitivity. Research on digital hydraulics is driven by the need for highly energy efficient hydraulic machines but is relatively immature compared to other energy-saving technologies. This review introduces the development of SIHCs particularly focusing on the work being undertaken in the last 15 years and evaluates the device configurations, performance, and control strategies that are found in the current SIHC research. Various designs for high-speed switching valves are presented, and their advantages and limitations are compared and discussed. The current limitations of SIHCs are discussed and suggestions for the future development of SIHCs are made.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 363
Author(s):  
Qi Zhang ◽  
Zhuangzhuang Xing ◽  
Duan Huang

We demonstrate a pruned high-speed and energy-efficient optical backpropagation (BP) neural network. The micro-ring resonator (MRR) banks, as the core of the weight matrix operation, are used for large-scale weighted summation. We find that tuning a pruned MRR weight banks model gives an equivalent performance in training with the model of random initialization. Results show that the overall accuracy of the optical neural network on the MNIST dataset is 93.49% after pruning six-layer MRR weight banks on the condition of low insertion loss. This work is scalable to much more complex networks, such as convolutional neural networks and recurrent neural networks, and provides a potential guide for truly large-scale optical neural networks.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5600
Author(s):  
Xiaoqiang Xiang ◽  
Lili Liu ◽  
Luying Que ◽  
Conghan Jia ◽  
Bo Yan ◽  
...  

In this work, a biological retina inspired tone mapping processor for high-speed and energy-efficient image enhancement has been proposed. To achieve high throughput and high energy efficiency, several hardware design techniques have been proposed, including data partition based parallel processing with S-shape sliding, adjacent frame feature sharing, multi-layer convolution pipelining, and convolution filter compression with zero skipping convolution. Implemented on a Xilinx’s Virtex7 FPGA, the proposed design achieves a high throughput of 189 frames per second for 1024 × 768 RGB images while consuming 819 mW. Compared with several state-of-the-art tone mapping processors, the proposed design shows higher throughput and energy efficiency. It is suitable for high-speed and energy-constrained image enhancement applications.


Author(s):  
Yap June Wai ◽  
Zulkanain Mohd Yussof ◽  
Sani Irwan Md Salim

Deep Convolution Neural Network (CNN) algorithm have recently gained popularity in many applications such as image classification, video analytic, object recognition and segmentation. Being compute-intensive and memory expensive, CNN computations are common accelerated by GPUs with high power dissipations. Recent studies show implementation of CNN on FPGA and it gain higher advantage in term of energy-efficient and flexibility over Software-configurable-GPUs. The proposed framework is verified by implement Tiny-YOLO-v2 on De1SoC. The design development in this project is HLS approach to ease effort from writing complex RTL codes and provide fast verification through emulation and profiling tools provided in the OpenCL SDK. To best of our knowledge, this is the first implementation of Tiny-YOLO-v2 CNN based object detection algorithm on a small scale De1SoC board using Intel FPGA SDK for OpenCL approach.


Sign in / Sign up

Export Citation Format

Share Document