A lateral comb-drive structure for energy scavenging

Author(s):  
A. Nounou ◽  
H.F. Ragaie
Keyword(s):  
2012 ◽  
Vol 132 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Maruyama ◽  
Muneki Nakada ◽  
Makoto Mita ◽  
Takuya Takahashi ◽  
Hiroyuki Fujita ◽  
...  

2009 ◽  
Author(s):  
Jennifer Lei ◽  
Ignacio Minana ◽  
Matthew Young ◽  
Daniel Dabrowski
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 219
Author(s):  
Phuoc Duc Nguyen ◽  
Lok-won Kim

People nowadays are entering an era of rapid evolution due to the generation of massive amounts of data. Such information is produced with an enormous contribution from the use of billions of sensing devices equipped with in situ signal processing and communication capabilities which form wireless sensor networks (WSNs). As the number of small devices connected to the Internet is higher than 50 billion, the Internet of Things (IoT) devices focus on sensing accuracy, communication efficiency, and low power consumption because IoT device deployment is mainly for correct information acquisition, remote node accessing, and longer-term operation with lower battery changing requirements. Thus, recently, there have been rich activities for original research in these domains. Various sensors used by processing devices can be heterogeneous or homogeneous. Since the devices are primarily expected to operate independently in an autonomous manner, the abilities of connection, communication, and ambient energy scavenging play significant roles, especially in a large-scale deployment. This paper classifies wireless sensor nodes into two major categories based the types of the sensor array (heterogeneous/homogeneous). It also emphasizes on the utilization of ad hoc networking and energy harvesting mechanisms as a fundamental cornerstone to building a self-governing, sustainable, and perpetually-operated sensor system. We review systems representative of each category and depict trends in system development.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Md Al Mahadi Hasan ◽  
Yuanhao Wang ◽  
Chris R. Bowen ◽  
Ya Yang

AbstractThe development of a nation is deeply related to its energy consumption. 2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for industry-level applications, such as self-powered sensor devices, environmental monitoring, and large-scale power generation. Scientists from around the world are working to utilize their engrossing properties to overcome the challenges in material selection and fabrication technologies for compact energy scavenging devices to replace batteries and traditional power sources. In this review, the variety of techniques for scavenging energies from sustainable sources such as solar, air, waste heat, and surrounding mechanical forces are discussed that exploit the fascinating properties of 2D nanomaterials. In addition, practical applications of these fabricated power generating devices and their performance as an alternative to conventional power supplies are discussed with the future pertinence to solve the energy problems in various fields and applications.


Author(s):  
Win Adiyansyah Indra ◽  
Abdullah Ihsan Imam Jurjani ◽  
Nurulhalim Hassim ◽  
Safarudin Gazali Herawan ◽  
Nur Syahirah Zamzam ◽  
...  
Keyword(s):  

Mechatronics ◽  
2020 ◽  
Vol 71 ◽  
pp. 102420
Author(s):  
David Brunner ◽  
Han Woong Yoo ◽  
Georg Schitter

2015 ◽  
Vol 183 (3-4) ◽  
pp. 313-319 ◽  
Author(s):  
P. Zheng ◽  
W. G. Jiang ◽  
C. S. Barquist ◽  
Y. Lee ◽  
H. B. Chan

Sign in / Sign up

Export Citation Format

Share Document