Study on the Refrigerant Natural Circulation System Performance in Calefaction Condition

Author(s):  
Li-ying Sun ◽  
Zui-liang Ma
2006 ◽  
Vol 18 (4) ◽  
pp. 305-333 ◽  
Author(s):  
Mio Hirayama ◽  
Hisashi Umekawa ◽  
Mamoru Ozawa

2021 ◽  
Vol 155 ◽  
pp. 108143
Author(s):  
Yuqi Lin ◽  
Puzhen Gao ◽  
Xianbing Chen ◽  
Solomon Bello ◽  
Chunping Tian ◽  
...  

2011 ◽  
Vol 38 (10) ◽  
pp. 2227-2237 ◽  
Author(s):  
Vikas Jain ◽  
P.P. Kulkarni ◽  
A.K. Nayak ◽  
P.K. Vijayan ◽  
D. Saha ◽  
...  

Author(s):  
Katarzyna Skolik ◽  
Anuj Trivedi ◽  
Marina Perez-Ferragut ◽  
Chris Allison

The NuScale Small Modular Reactor (SMR) is an integrated Pressurized Water Reactor (iPWR) with the coolant flow based on the natural circulation. The reactor core consists of 37 fuel assemblies similar to those used in typical PWRs, but only half of their length to generate 160MW thermal power (50 MWe). Current study involves the development of a NuScale-SMR model based on its Design Certification Application (DCA) data (from NRC) using RELAP/SCDAPSIM. The turbine trip transient (TTT) was simulated and analysed. The objective was to assess this version of the code for natural circulation system modeling capabilities and also to verify the input model against the publicly available TTT results obtained using NRELAP5. This successful benchmark confirms the reliability of the thermal hydraulic model and allows authors to use it for further safety and severe accident analyses. The reactor core channels, pressurizer, riser and downcomer pipes as well as the secondary steam generator tubes and the containment were modeled with RELAP5 components. SCDAP core and control components were used for the fuel elements in the core. The final input deck achieved the steady state with the operating conditions comparable to those reported in the DCA. RELAP/SCDAPSIM predictions are found to be satisfactory and comparable to the reference study. It confirms the code code capabilities for natural circulation system transients.


Author(s):  
Shengyao Jiang ◽  
Xingtuan Yang ◽  
Youjie Zhang

The experiments were performed on the test loop HRTL-5, which simulates geometry and system design of the 5-MW Nuclear Heating Reactor developed by the Institute of Nuclear Energy Technology, Tsinghua University. Because of the difference of the geometry design and operating conditions between the heating reactor and the boiling water reactor, the flow behavior presents great differences too, some of which haven’t been deeply studied so far. Results show that in heating reactor, sub-cooled boiling, condensation and flashing play an important role on the flow instabilities of the natural circulation system. Correspondingly, geysering instability, flashing instability, and flow excursion are the very typical instabilities occurring in the primary loop of HRTL-5, which are different from those in boiling water reactor conditions. The compressibility of the steam space on the top of the primary loop has also great influence on the instability of the natural circulation system.


Author(s):  
Yukiko Kawabata ◽  
Masayoshi Matsuura ◽  
Shizuka Hirako ◽  
Takashi Hoshi

The Japan Atomic Power Company has initiative in developing the DMS concept as a 400MWe-class light water reactor. The main features of the DMS relative to overcoming the scale demerit are the miniaturization and simplification of systems and equipment, integrated modulation of construction, standardization of equipment layouts and effective use of proven technology. The decrease in primary containment vessel (PCV) height is achieved by reducing the active fuel length of the DMS core, which is about two meters compared with 3.7 meters in the conventional BWR. The short active fuel length reduces the drop in core pressure, and overcomes the natural circulation system. And by using the lower steam velocity in the upper plenum in the reactor pressure vessel (RPV), we can adopt a free surface separation (FSS) system. The FSS eliminates the need for a separator and thus helps minimize the RPV and PCV sizes. In order to improve safety efficiency, developing an Emergency Core Cooling System (ECCS) for the DMS was considered. The ECCS configuration in the DMS was examined to achieve core coverage and economic efficiency from the following. 1: Eliminating high-pressure injection systems. 2: Adopting passive safety-related systems. 3: Optimizing distribution for the systems and power source for the ECCS. In this way the configuration of the ECCS for the DMS was established, providing the same level of safety as the ABWR and the passive systems. Based on the results of Loss of Coolant Accident (LOCA) analysis, core cover can be achieved by this configuration. Therefore, the plant concept was found to offer both economic efficiency and safety.


Author(s):  
Xiaoyan Wang ◽  
Siyang Huang ◽  
Wenxi Tian ◽  
Lie Chen ◽  
Suizheng Qiu ◽  
...  

In order to study the effect of rolling motion on flow instability of parallel rectangular channels of natural circulation, the natural circulation reactor simulation system is used for physical prototype. And theory analysis model of parallel rectangular channels of natural circulation system under rolling motion is established and coded by Fortran. The results of the program are verified to the experiments, and the results are in good agreement. The flow instability boundaries of different pressure under static and rolling motion are calculated respectively. The results show that: 1) under static condition, with the increase of the pressure, the instability boundary line changes, and the system becomes more stable; 2) under rolling conditions, the heating power of instability boundary decreases comparing to the stable conditions. The instability occurs earlier; 3) the stability of the system decreases with the increasing of rolling amplitude and frequency.


Sign in / Sign up

Export Citation Format

Share Document