Finite element simulation analysis of influencing factors in near field eddy current testing

Author(s):  
Zhang Wei ◽  
Li Yanjun ◽  
Shi Yibing ◽  
Xiao Siwei ◽  
Li Zhipeng
2014 ◽  
Vol 45 (1-4) ◽  
pp. 887-893 ◽  
Author(s):  
Houda Zaidi ◽  
Laurent Santandrea ◽  
Guillaume Krebs ◽  
Yann Le Bihan ◽  
Edouard Demaldent

2014 ◽  
Vol 945-949 ◽  
pp. 1987-1990
Author(s):  
Si Quan Zhang ◽  
Yu Liu ◽  
Hao Jun Xu ◽  
Chang Yin

The structure of conventional bobbin probe was modified to improve the detection sensitivity of defects in metal tube. Based on the results of finite element simulation, several types of modified probes are fabricated and used to detect artificial defects in tube and the defect signals are acquired and analyzed. The simulation and experimental results verified that the modified eddy current probes are more sensitive to non-axial defects than conventional bobbin probe and can improve the reliability of tube inspection.


2013 ◽  
Vol 680 ◽  
pp. 410-416 ◽  
Author(s):  
Jun Ming Wang ◽  
Fu Yuan Tong ◽  
Xiao Xue Li

By simplifying the geometric shape of abrasive grain in a cone-shape, the authors conduct the 3D dynamic finite element simulation on profile grinding with axial feed by single abrasive grain using deform-3D software. Analysis is made on the influence upon the grinding forces in case of the same grinding speed, the same grinding depth and the same friction factor between wheel and workpiece at different axial feed. The results show that the normal force and the tangential force increase with the increase of axial feed, but the axial force decreases with the axial feed.


2018 ◽  
Vol 204 ◽  
pp. 07017 ◽  
Author(s):  
Mardji ◽  
Andoko ◽  
Dani Prasetiyo

Chassis on the vehicle serves as the main weight support vehicle. Designing a precise chassis will give optimal results between the safety level and the size of the construction, so that finite element simulation analysis is required to know how strong the chassis sustains the load on it. The purpose of this research is to get the result of chassis simulation on UM electric car when getting the loading by using ANSYS 18.1 software. As for the step this study started from chassis modeling using Autodesk Inventor Professional 2018 software and finite element simulation using static structural feature in software ANSYS 18.1. From the simulation result obtained Equivalent Stress 59,983MPa, Equivalent Elastic Strain 33,25x10-5 mm / mm Total Deformation 2,43mm and safety factor 3,55.


2012 ◽  
Vol 522 ◽  
pp. 245-248 ◽  
Author(s):  
Hai Tao Liu ◽  
Ya Zhou Sun ◽  
De Bin Shan ◽  
Yan Quan Geng

There are lots of titanium alloy parts which have large-scale micro-structures in astronautic structure and medical implants, so the micro milling becomes one of the effective processing methods in getting the surface micro-structure. Because the titanium alloy has high caking property in processing, it needs a research on the cutting heat and force in order to get better machining precision and surface quality. According to the finite element theory in elastic and plasticity, the influence of cutting speed to the cutting heat and force is got by finite element simulation analysis to the titanium material TC4 in cutting process. It can get the simulation results of cutting heat and force in the micro milling processing by finite element analysis, and then compared, the basic influence which the cutting speed to the cutting heat and force is got. The correctness of the result is checked through cutting experiments.


Sign in / Sign up

Export Citation Format

Share Document