Design and analysis of a dual-rotor radial flux permanent-magnet generator

Author(s):  
Peifeng Xu ◽  
Xianxing Liu ◽  
Kai Shi ◽  
Feng Xiao
2021 ◽  
Vol 12 (2) ◽  
pp. 68-80
Author(s):  
Muhammad Fathul Hikmawan ◽  
Agung Wibowo ◽  
Muhammad Kasim

Mechanical tolerance is something that should be carefully taken into consideration and cannot be avoided in a product for manufacturing and assembly needs, especially in the design stage, to avoid excessive dimensional and geometric deviations of the components made. This paper discusses how to determine and allocate dimensional and geometric tolerances in the design of a 10 kW, 500 rpm radial flux permanent magnet generator prototype components. The electrical and mechanical design results in the form of the detailed nominal dimensions of the generator components, and the allowable air gap range are used as input parameters for tolerance analysis. The values of tolerance allocation and re-allocation process are carried out by considering the capability of the production machine and the ease level of the manufacturing process. The tolerance stack-up analysis method based on the worst case (WC) scenario is used to determine the cumulative effect on the air gap distance due to the allocated tolerance and to ensure that the cumulative effect is acceptable so as to guarantee the generator's functionality. The calculations and simulations results show that with an air gap of 1 ± 0.2 mm, the maximum air gap value obtained is 1.1785 mm, and the minimum is 0.8 mm. The smallest tolerance value allocation is 1 µm on the shaft precisely on the FSBS/SRBS feature and the rotor on the RPMS feature. In addition, the manufacturing process required to achieve the smallest tolerance allocation value is grinding, lapping, and polishing processes.


CYCLOTRON ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Adeguna Ridlo Pramurti

Abstrak—Generator magnet permanen fluks radial adalah mesin yang efektif untuk diaplikasikan pada sistem pembangkit listrik tenaga angin kecepatan rendah. Rugi magnetik akibat celah udara atau torsi denyut adalah salah satu masalah yang dapat menyebabkan penurunan performa tegangan keluaran dan daya keluaran pada generator jenis ini. Pada penelitian ini, topologi yang digunakan adalah stator ganda generator magnet permanen fluks radial. Topologi tersebut diharapkan mampu meningkatkan fluks listrik yang dihasilkan oleh kumparan-kumparan stator. Tujuan penelitian ini adalah untuk meningkatkan tegangan keluaran dan daya keluaran generator menggunakan metode desain pemasangan lebar gigi-gigi stator. Ada 3 variabel pada metode desain ini. Ketiga variabel desain mampu menurunkan nilai torsi denyut. Namun, ketiganya menyebabkan ketidakstabilan putaran generator. Hal ini disebabkan oleh peningkatan distribusi frekuensi torsi denyut. Ketiga variabel mampu meningkatkan tegangan keluaran generator dan daya keluaran generator masing-masing mencapai 3.94% dan 3.3%. Peningkatan tegangan keluaran dan daya keluaran generator tidak terlalu signifikan disebabkan oleh peningkatan distribusi frekuensi torsi denyut yang mencapai 162%.Kata kunci: daya keluaran, generator magnet permanen fluks radial, pemasangan lebar gigi-gigi stator, stator ganda, dan tegangan keluaran.Abstract— Radial flux permanent magnet generators are effective for application to low speed wind power generation systems. Magnetic loss due to air gap or called cogging torque is one of the problems that can cause a decrease in the output voltage and output power performance of this type of generator. In this study, the topology used is a dual stator radial flux permanent magnet generator. The topology is expected to increase the electrical flux produced by the stator coils. The purpose of this study is to increase the output voltage and output power of the generator using the stator teeth pairing design method. There are 3 variables in this design method. The three variables have been able to decrease the value of cogging torque. However, the three design variables have made the generator more unstable. This is due to an increase in the cogging torque frequency distribution. The three variables have been able to increase the generator output voltage and the generator output power respectively reached 3.94% and 3.3%. The increase in output voltage and output power of the generator is not too significant due to an increase in the cogging torque frequency distribution which reached 162%, karena itu tuliskan temuan atau kontribusi utama dari naskah sebaik mungkin dengan singkat. Keywords: cogging torque, dual stator, radial flux permanent magnet generator, output power, and output voltage


Author(s):  
Alex Wenda

Utilization of renewable energy, such as water and wind always has constraints in the form of varying and not constant water or airflow velocity so that a generator is capable of working in that condition. This study aims to design a permanent magnet generator with a size calculated based on a target output power of 500 watts. The dimensions of the generator produced are calculated by the equation and produce a rotor diameter and core length of 108 mm and 52 mm. The generator is designed to have 18 slots, 16 poles and 3 phases. The generator is tested with different speed variations and no load. No-load test results with variations in the speed of 50 rpm, 250 rpm, 500 rpm, and 1000 rpm produces a voltage of 11.30 volts, 56.52 volts, 113.04 volts, 169.53 volts, and 226.08 volts. After that, the generator is tested with load variations 5 Ω, 10 Ω, 15 Ω, and 20 Ω in order to get the value of its power and efficiency. The highest power produced at a speed of 500 rpm is 580,791 watts. The highest power produced by the generator is at a speed of 1000 rpm which is 1170.53 watts. the highest efficiency produced by this permanent magnet generator is 79.76%.


Sign in / Sign up

Export Citation Format

Share Document