Effect of Surface Stress on Indentation Response of Elastic-Plastic Materials

Author(s):  
Xu Long ◽  
Ziyi Shen ◽  
Xiaotong Chang ◽  
Yutai Su ◽  
Hongbin Shi ◽  
...  
2013 ◽  
Vol 668 ◽  
pp. 616-620
Author(s):  
Shuai Huang ◽  
Huang Yuan

Computational simulations of indentations in elastic-plastic materials showed overestimate in determining elastic modulus using the Oliver & Pharr’s method. Deviations significantly increase with decreasing material hardening. Based on extensive finite element computations the correlation between elastic-plastic material property and indentation has been carried out. A modified method was introduced for estimating elastic modulus from dimensional analysis associated with indentation data. Experimental verifications confirm that the new method produces more accurate prediction of elastic modulus than the Oliver & Pharr’s method.


2019 ◽  
Vol 6 (11) ◽  
pp. 190543 ◽  
Author(s):  
Yazhe Li ◽  
Nengxiong Xu ◽  
Jinzhi Tu ◽  
Gang Mei

The modelling and understanding of crack propagation for elastic–plastic materials is critical in various engineering applications, such as safety analysis of concrete structures and stability analysis of rock slopes. In this paper, the local radial basis point interpolation method (LRPIM) combined with elastic–plastic theory and fracture mechanics is employed to analyse crack propagation in elastic–plastic materials. Crack propagation in elastic–plastic materials is compared using the LRPIM and eXtended finite-element method (XFEM). The comparative investigation indicates that: (i) the LRPIM results are close to the model test results, which indicates that it is feasible for analysing the crack growth of elastic–plastic materials; (ii) compared with the LRPIM, the XFEM results are closer to the experimental results, showing that the XFEM has higher accuracy and computational efficiency; and (iii) compared with the XFEM, when the LRPIM method is used to analyse crack propagation, the propagation path is not smooth enough, which can be explained as the crack tip stress and strain not being accurate enough and still needing further improvement.


Sign in / Sign up

Export Citation Format

Share Document