Towards a low cost Brain-computer Interface for real time control of a 2 DOF robotic arm

Author(s):  
Mashal Fatima ◽  
M. Shafique ◽  
Z. H. Khan

Brain-Computer Interface (BCI) is atechnology that enables a human to communicate with anexternal stratagem to achieve the desired result. This paperpresents a Motor Imagery (MI) – Electroencephalography(EEG) signal based robotic hand movements of lifting anddropping of an external robotic arm. The MI-EEG signalswere extracted using a 3-channel electrode system with theAD8232 amplifier. The electrodes were placed on threelocations, namely, C3, C4, and right mastoid. Signalprocessing methods namely, Butterworth filter and Sym-9Wavelet Packet Decomposition (WPD) were applied on theextracted EEG signals to de-noise the raw EEG signal.Statistical features like entropy, variance, standarddeviation, covariance, and spectral centroid were extractedfrom the de-noised signals. The statistical features werethen applied to train a Multi-Layer Perceptron (MLP) -Deep Neural Network (DNN) to classify the hand movementinto two classes; ‘No Hand Movement’ and ’HandMovement’. The resultant k-fold cross-validated accuracyachieved was 85.41% and other classification metrics, suchas precision, recall sensitivity, specificity, and F1 Score werealso calculated. The trained model was interfaced withArduino to move the robotic arm according to the classpredicted by the DNN model in a real-time environment.The proposed end to end low-cost deep learning frameworkprovides a substantial improvement in real-time BCI.


2004 ◽  
Vol 21 (6) ◽  
pp. 404-408 ◽  
Author(s):  
Steven G. Mason ◽  
Regula Bohringer ◽  
Jaimie F. Borisoff ◽  
Gary E. Birch

1986 ◽  
Vol 19 (13) ◽  
pp. 113-117
Author(s):  
J.J. Serrano ◽  
C. Cebrián ◽  
J. Vila ◽  
R. Ors

Leonardo ◽  
2012 ◽  
Vol 45 (4) ◽  
pp. 322-329 ◽  
Author(s):  
Byron Lahey ◽  
Winslow Burleson ◽  
Elizabeth Streb

Translation is a multimedia dance performed on a vertical wall filled with the projected image of a lunar surface. Pendaphonics is a low-cost, versatile, and robust motion-sensing hardware-software system integrated with the rigging of Translation to detect the dancers' motion and provide real-time control of the virtual moonscape. Replacing remotely triggered manual cues with high-resolution, real-time control by the performers expands the expressive range and ensures synchronization of feedback with the performers' movements. This project is the first application of an ongoing collaboration between the Motivational Environments Research Group at Arizona State University (ASU) and STREB Extreme Action Company.


Author(s):  
Ryan W. Krauss

Arduino microcontrollers are popular, low-cost, easy-to-program, and have an active user community. This paper seeks to quantitatively assess whether or not Arduinos are a good fit for real-time feedback control experiments and controls education. Bode plots and serial echo tests are used to assess the use of Arduinos in two scenarios: a prototyping mode that involves bidirectional real-time serial communication with a PC and a hybrid mode that streams data in real-time over serial. The closed-loop performance with the Arduino is comparable to that of another more complicated and more expensive microcontroller for the plant considered. Some practical tips on using an Arduino for real-time feedback control are also given.


2018 ◽  
Vol 10 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Saad Abdullah ◽  
◽  
Muhammad A. Khan ◽  
Mauro Serpelloni ◽  
Emilio Sardini ◽  
...  

2012 ◽  
Vol 614-615 ◽  
pp. 1562-1565
Author(s):  
Yu Sen Li ◽  
Ying Sun

In order to realize the sensor signal acquisition and analysis of data, according to data acquisition system design ideas of the PCI bus, applying to CPLD complex programmable controller and CH365 interface chip and combined with the actual needs of data collection ,designed a kind of low cost, high speed process controller. CPLD realizes data cache control and the control of reading. This design can gather 16 roads analog signals and real-time pulse signal of 8 roads on the same time, which includes a 16-bit digital output channel and a 32-bit counter, could be used in the real-time control.


2014 ◽  
Vol 926-930 ◽  
pp. 2690-2693
Author(s):  
Yao Cheng

Ethernet has been broadly used in modern industry for its exoteric standard, flexibility and low cost. Ethernet is becoming the right choice for many engineering application. However, issues of performance must be considered when we apply it to timing sensitive field such as real time control system and so on. An Ethernet interface solution implemented based on s3c2410a and ax88796 was described in this article, and in order to improve the performance, inline assemble was introduced into this study. The effect of performance improvement through inline assemble was checked by ping experiments. It was proved that inline assemble can improve the performance of Ethernet interface distinctly.


2005 ◽  
Vol 15 (08) ◽  
pp. 2349-2360 ◽  
Author(s):  
LEONARDO A. B. TÔRRES ◽  
LUIS ANTONIO AGUIRRE

This paper describes a laboratory setup suitable for implementing low cost real-time solutions in the fields of control, synchronization and information transmission based on chaotic oscillators. The setup has the following features: (a) it is composed of a Chua oscillator furnished with three actuators thus permitting mono- and multi-variable control; (b) the actuators can be driven by the analog outputs of a standard I/O-board; in order to be able to actuate fast enough (c) the I/O-board is driven by a real time program written for Linux and (d) an inductorless implementation of Chua's circuit permits to slow down the original dynamics to just a few hertz. This enables implementing sophisticated control schemes without severe time restrictions. The paper concludes with a sample of experiments performed using the new setup.


Sign in / Sign up

Export Citation Format

Share Document