Low Cost Lightweight Obstacle Detection System for Micro Aerial Vehicles

Author(s):  
Mohammad Salah Uddin
Author(s):  
C. Giannì ◽  
M. Balsi ◽  
S. Esposito ◽  
P. Fallavollita

Obstacle detection is a fundamental task for Unmanned Aerial Vehicles (UAV) as a part of a Sense and Avoid system. In this study, we present a method of multi-sensor obstacle detection that demonstrated good results on different kind of obstacles. This method can be implemented on low-cost platforms involving a DSP or small FPGA. In this paper, we also present a study on the typical targets that can be tough to detect because of their characteristics of reflectivity, form factor, heterogeneity and show how data fusion can often overcome the limitations of each technology.


Sensors ◽  
2017 ◽  
Vol 17 (4) ◽  
pp. 802 ◽  
Author(s):  
Elena López ◽  
Sergio García ◽  
Rafael Barea ◽  
Luis Bergasa ◽  
Eduardo Molinos ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 474
Author(s):  
Elio Hajj Assaf ◽  
Cornelius von von Einem ◽  
Cesar Cadena ◽  
Roland Siegwart ◽  
Florian Tschopp

Increasing demand for rail transportation results transportation by rail, resulting in denser and more high-speed usage of the existing railway network, making makes new and more advanced vehicle safety systems necessary. Furthermore, high traveling speeds and the greatlarge weights of trains lead to long braking distances—all of which necessitates Long braking distances, due to high travelling speeds and the massive weight of trains, necessitate a Long-Range Obstacle Detection (LROD) system, capable of detecting humans and other objects more than 1000 m in advance. According to current research, only a few sensor modalities are capable of reaching this far and recording sufficiently accurate enoughdata to distinguish individual objects. The limitation of these sensors, such as a 1D-Light Detection and Ranging (LiDAR), is however a very narrow Field of View (FoV), making it necessary to use ahigh-precision means of orienting to target them at possible areas of interest. To close this research gap, this paper presents a novel approach to detecting railway obstacles by developinga high-precision pointing mechanism, for the use in a future novel railway obstacle detection system In this work such a high-precision pointing mechanism is developed, capable of targeting aiming a 1D-LiDAR at humans or objects at the required distance. This approach addresses To address the challenges of a low target pricelimited budget, restricted access to high-precision machinery and equipment as well as unique requirements of our target application., a novel pointing mechanism has been designed and developed. By combining established elements from 3D printers and Computer Numerical Control (CNC) machines with a double-hinged lever system, simple and cheaplow-cost components are capable of precisely orienting an arbitrary sensor platform. The system’s actual pointing accuracy has been evaluated using a controlled, in-door, long-range experiment. The device was able to demonstrate a precision of 6.179 mdeg, which is at the limit of the measurable precision of the designed experiment.


Author(s):  
Matthias Nieuwenhuisen ◽  
David Droeschel ◽  
Johannes Schneider ◽  
Dirk Holz ◽  
Thomas Labe ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5109
Author(s):  
Mariano Gonzalez-de-Soto ◽  
Rocio Mora ◽  
José Antonio Martín-Jiménez ◽  
Diego Gonzalez-Aguilera

A new roadway eventual obstacle detection system based on computer vision is described and evaluated. This system uses low-cost hardware and open-source software to detect and classify moving elements in roads using infra-red and colour video images as input data. This solution represents an important advancement to prevent road accidents due to eventual obstacles which have considerably increased in the past decades, mainly with wildlife. The experimental evaluation of the system demonstrated that the proposed solution detects and classifies correctly different types of moving obstacles on roads, working robustly under different weather and illumination conditions.


Sign in / Sign up

Export Citation Format

Share Document