2016 ◽  
Vol 5 (3) ◽  
pp. 73 ◽  
Author(s):  
E. Sandi ◽  
F. Y. Zulkifli ◽  
E. T. Rahardjo

Reducing system complexity and cost in synthesizing a sparse array antenna design is a challenging task for practical communication systems, such as radar systems and space communication. In this paper, a hybrid technique to synthesize a linear sparse array antenna design is described. This technique is developed using two methods. The first method is a combinatorial approach that applies cyclic difference sets (CDS) integers to significantly reduce the number of antenna elements. The approach and procedure used to apply the new CDS method to configure a linear sparse array, with significant reduction of the spatial antenna dimension, is described. The second method, applied to the array result of the first method, is amplitude tapering using a binomial array approach to reduce the sidelobes level (SLL). The simulation and measurement results of the sample sparse array design showed that the SLL was reduced in comparison to the sparse array design using only the combinatorial CDS method.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 213
Author(s):  
Caroline Loss ◽  
Carolina Gouveia ◽  
Rita Salvado ◽  
Pedro Pinho ◽  
José Vieira

A bio-radar system is presented for vital signs acquisition, using textile antennas manufactured with a continuous substrate that integrates the ground plane. Textile antennas were selected to be used in the RF (Radio Frequency) front-end, rather than those made of conventional materials, to further integrate the system in a car seat cover and thus streamline the industrial manufacturing process. The development of the novel substrate material is described in detail, as well as its characterization process. Then, the antenna design considerations are presented. The experiments to validate the textile antennas operation by acquiring the respiratory signal of six subjects with different body structures while seated in a car seat are presented. In conclusion, it was possible to prove that bio-radar systems can operate with textile-based antennas, providing accurate results of the extraction of vital signs.


2019 ◽  
Vol 67 (10) ◽  
pp. 6317-6324 ◽  
Author(s):  
Jose Luis Vazquez-Roy ◽  
Adrian Tamayo-Dominguez ◽  
Eva Rajo-Iglesias ◽  
Manuel Sierra-Castaner

Sign in / Sign up

Export Citation Format

Share Document