Influence of Automatic Detection on the Dynamic Response of the Large Diameter Bored Pile

Author(s):  
HongSheng Wu ◽  
Yong Liu ◽  
HuiMin Cai ◽  
YueDong Wu ◽  
Jian Liu
Author(s):  
Charles W. W. Ng ◽  
Limin Zhang ◽  
Dora C. N. Nip

Author(s):  
Hammam Zeitoun ◽  
Masˇa Brankovic´ ◽  
Knut To̸rnes ◽  
Simon Wong ◽  
Eve Hollingsworth ◽  
...  

One of the main aspects of subsea pipeline design is ensuring pipeline stability on the seabed under the action of hydrodynamic loads. Hydrodynamic loads acting on Piggyback Pipeline Systems have traditionally been determined by pipeline engineers using an ‘equivalent pipeline diameter’ approach. The approach is simple and assumes that hydrodynamic loads on the Piggyback Pipeline System are equal to the loads on a single pipeline with diameter equal to the projected height of the piggyback bundle (the sum of the large diameter pipeline, small diameter pipeline and gap between the pipelines) [1]. Hydrodynamic coefficients for single pipelines are used in combination with the ‘equivalent diameter pipe’ to determine the hydrodynamic loads on the Piggyback Pipeline System. In order to assess more accurately the dynamic response of a Piggyback Pipeline System, an extensive set of physical model tests has been performed to measure hydrodynamic forces on a Piggyback Pipeline System in combined waves and currents conditions, and to determine in-line and lift force coefficients which can be used in a dynamic stability analysis to generate the hydrodynamic forces on the pipeline [2]. This paper describes the implementation of the model testing results in finite elements dynamic stability analysis and presents a case study where the dynamic response of a Piggyback Pipeline System was assessed using both the conventional ‘equivalent diameter approach’ and the hydrodynamic coefficients determined using model testing. The responses predicted using both approaches were compared and key findings presented in the paper, in terms of adequacy of the equivalent diameter approach, and effect of piggyback gap (separation between the main line and the secondary line) on the response.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Changjie Zheng ◽  
Hanlong Liu ◽  
Xuanming Ding ◽  
Qiang Fu

An analytical solution is developed in this paper to investigate the horizontal dynamic response of a large-diameter pipe pile in viscoelastic soil layer. Potential functions are applied to decouple the governing equations of the outer and inner soil. The analytical solutions of the outer and inner soil are obtained by the method of separation of variables. The horizontal dynamic response and complex dynamic stiffnesses of the pipe pile are then obtained based on the continuity conditions between the pile and the outer and inner soil. To verify the validity of the solution, the derived solution in this study is compared with an existing solution for a solid pile. Numerical examples are presented to analyze the vibration characteristics of the pile and illustrate the effects of major parameters on the stiffness and damping properties.


2013 ◽  
Vol 353-356 ◽  
pp. 533-539 ◽  
Author(s):  
Wen Xu ◽  
Yu Bin Hou

Through field static load test and pile shaft axial force test, field testing study is conducted on bearing behavior of NAKS-construction-method belled large-diameter PHC pipe pile; besides, the test result is compared with that of hammering-method PHC pipe pile and bored pile with same pile length and diameter under the same site condition. The result shows that the ultimate bearing capacity of NAKS-construction-method belled large-diameter PHC pipe pile is slightly inferior to hammering-method PHC pipe pile but obviously superior to that of bored pile. Compared with traditional hammering-method pipe pile, the pile side resistance of NAKS-construction-method belled pipe pile is smaller; however, the higher toe resistance will give better play to bearing capacity of bearing stratum of pile toe; moreover, it is found that under the action of ultimate load and failure load, the maximum settlement and final settlement of NAKS-construction-method belled pipe pile tip are obviously lower than that of other test piles, which is conductive to lessening foundation settlement of upper structure.


Sign in / Sign up

Export Citation Format

Share Document