An analysis of CCD camera noise and its effect on pressure sensitive paint instrumentation system signal-to-noise ratio

Author(s):  
D.R. Mendoza
2011 ◽  
Vol 38 (3) ◽  
pp. 1374-1377 ◽  
Author(s):  
David M. Klein ◽  
Francois Therriault-Proulx ◽  
Louis Archambault ◽  
Tina M. Briere ◽  
Luc Beaulieu ◽  
...  

2009 ◽  
Vol 41 (5) ◽  
pp. 574-579 ◽  
Author(s):  
Lingfeng Chen ◽  
Xusheng Zhang ◽  
Jiaming Lin ◽  
Dingguo Sha

2008 ◽  
Author(s):  
Adric Eckstein ◽  
Pavlos Vlachos

Micro-PIV experiments rely upon the use of a microscope to achieve the higher spatial resolution. However, several optical limitations are introduced at these scales [1–3]. In addition, due to the low illumination levels, micro-PIV experiments require the use of either a cooled CCD camera or an image intensifier to provide increased signal-to-noise ratio. Although CCD cameras offer superior sensitivity and signal to noise ratio, intensified CMOS cameras offer an attractive alternative for performing high frequency measurements. However, intensified cameras are known to introduce artifacts such as added background noise. This study examines these issues and the feasibility of employing such technologies for microPIV through the use of the IDT-X5 intensified CMOS camera, capable of 500 Hz at a resolution of 2352×1728 pixels, with pulse separations as low as 2μs.


1994 ◽  
Vol 162 ◽  
pp. 104-105
Author(s):  
Eduardo Janot-Pacheco ◽  
Nelson Vani Leister

We have started in 1990 a search for moving bumps in the HeI λ 667.8 nm of mainly southern, bright Be stars. The objects of our sample have been selected on the basis of photometric variability (Cuypers et al., 1989). High resolution (R≥ 30,000), high signal-to-noise ratio (S/R≥ 300) spectroscopic observations have been performed at the brazilian Laboratório Nacional de Astrofísica with a CCD camera attached to the coudé spectrograph of the 1.60 m telescope (e.g. Table I). Several hundred spectra have been taken during the last three years. Photometric observations simultaneous with spectroscopy were made on the same site in July 1992 with a two-channel photometer (Stromgren b filter) and a CCD camera (Johnson B filter) installed at two 0.60 m telescopes. The idea is try to disentangle the controversy between NRP and RM models with the help of simultaneous spectroscopy and photometry.


2000 ◽  
Vol 6 (S2) ◽  
pp. 1134-1135
Author(s):  
P. Favia ◽  
S. Cooper ◽  
P. E. Mooney

The Detective Quantum Efficiency (DQE) is one of the best parameters to characterize the performance of a charge-coupled device (CCD) camera when electron dose is an issue. This can be when there are beam source brightness limitations as in high-resolution applications or when specimen dose must be limited. For single parameter detectors such as a backscatter detector in a SEM, the DQE is defined as the square of the signal-to noise ratio (SNR) at the output divided by the square of the signal-to-noise ratio at the input:where S, N, and n are respectively the signal, the noise and the electron dose. This definition is not valid to describe the performance of a multi-component device as an imaging detector. In fact a CCD camera is composed of many elements or pixels.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


1979 ◽  
Vol 10 (4) ◽  
pp. 221-230 ◽  
Author(s):  
Veronica Smyth

Three hundred children from five to 12 years of age were required to discriminate simple, familiar, monosyllabic words under two conditions: 1) quiet, and 2) in the presence of background classroom noise. Of the sample, 45.3% made errors in speech discrimination in the presence of background classroom noise. The effect was most marked in children younger than seven years six months. The results are discussed considering the signal-to-noise ratio and the possible effects of unwanted classroom noise on learning processes.


Sign in / Sign up

Export Citation Format

Share Document