Broadband varying angle shorted sectoral microstrip antennas with rectangular slot

Author(s):  
Amit A. Deshmukh ◽  
Mohil Gala ◽  
Priyanka Verma ◽  
Payal Mohadikar ◽  
Priyal Zaveri
2019 ◽  
Vol 63 (4) ◽  
pp. 332-342 ◽  
Author(s):  
Yahiea Alnaiemy ◽  
Taha A. Elwi ◽  
Lajos Nagy

This paper presents a printed rectangular slot microstrip antenna array of two elements based on an Electromagnetic Band Gap (EBG) structure. The proposed EBG structure is invented to improve the isolation between the radiating elements for multiple-input multiple-output (MIMO) application. Single and two slotted rectangular microstrip antennas are designed on an FR-4 substrate with a dielectric constant (εr) of 4.3 and loss tangent (tanδ) of 0.025 with thickness of 1.6 mm. The proposed EBG structure is designed as one planar row of 24 slots. The proposed array performance is tested numerically using Computer Simulation Technology Microwave Studio (CSTMW) of Finite Integration Technique (FIT) formulations. The antenna performance in terms of reflection coefficient (S11), isolation coefficient (S21), radiation patterns, boresight gain and Envelope Correlation Coefficient (ECC) are investigated before and after introducing the EBG structure to identify the significant enhancements. The proposed EBG structure is located between the radiating antenna elements to reduce the mutual coupling of the proposed antenna array. The edge to edge separation distance of the proposed antennas is λ0/16, where the λ0 is the free space wavelength at 2.45 GHz. The simulated results show a significant isolation enhancement from –6 dB to –29 dB at the first resonant frequency 2.45 GHz and from –10 dB to –25 dB at the second resonant frequency 5.8 GHz after introducing the EBG structure to the antenna array.


Author(s):  
Pushpinder Singh ◽  
Gaurav Monga

Microstrip patch antenna is a compact antenna which suffers the limitations of poor gain and reduction in radiation pattern. To reduce the resonance frequency of microstrip antenna increases the length of surface current with help of cutting slots in the patch. In this paper, a comparison of four Microstrip antennas with unequal length of rectangular slots is proposed. The microstrip antennas having rectangular shaped ground plane and FR4-epoxy substrate with relative permittivity 4.4, relative permeability 1 and dielectric loss tangent 0.02 with an overall size of 100×100×5 mm3. The performance of antennas is compared with slots in the patch and the effects of rectangular slots using operating frequency of 8 to 12 GHz are presented. The design simulate and analyze on FEM based HFSSv11 and this helps to compute VSWR, return loss,  gain, radiation efficiency and 3D polar plot of the proposed microstrip antenna. The proposed configuration gives broadside gain of more than 8 dBi and VSWR (>2) over entire range in simulated results.


2007 ◽  
Vol 2007 ◽  
pp. 1-4 ◽  
Author(s):  
Jibendu Sekhar Roy ◽  
Milind Thomas

The investigations on rectangular-slot-loaded and V-slot-loaded proximity-coupled microstrip antennas are reported. The performances of two antennas are investigated for the application in wireless local area network 2 (HIPERLAN/2) using IE3D software and the computed results are verified by measurement. Results show that the antennas have wide bandwidth and moderate gain and may be used as small, compact antennas for HIPERLAN/2 communication.


2011 ◽  
Vol E94-B (9) ◽  
pp. 2653-2655
Author(s):  
Kazuki IKEDA ◽  
Keigo SATO ◽  
Ken-ichi KAGOSHIMA ◽  
Shigeki OBOTE ◽  
Atsushi TOMIKI ◽  
...  

PIERS Online ◽  
2008 ◽  
Vol 4 (2) ◽  
pp. 176-180
Author(s):  
Shu-Fang Liu ◽  
Shao-Dong Liu

Sign in / Sign up

Export Citation Format

Share Document