Application of least square support vector machine based on particle swarm optimization to chaotic time series prediction

Author(s):  
Ping Liu ◽  
Jian Yao
2014 ◽  
Vol 511-512 ◽  
pp. 941-944 ◽  
Author(s):  
Hong Li Bian

Based on the particle swarm optimization (PSO) and BP neural network (BPNN), an algorithm for BP neural network optimized particle swarm optimization (PSOBPNN) is proposed. In the algorithm, PSO is used to obtain better network initial threshold and weight to compensate the defect of connection weight and thresholds of BPNN, thus it can make BPNN have faster convergence and greater learning ability. The efficiency of the proposed prediction method is tested by the simulation of the chaotic time series for Kent mapping. The simulations results show that the proposed method has higher forecasting accuracy compared with the BPNN, so it is proved that the algorithm is feasible and effective in the chaotic time series prediction.


2014 ◽  
Vol 543-547 ◽  
pp. 2108-2111
Author(s):  
Hong Li Bian

Based on the particle swarm optimization (PSO) and BP neural network (BPNN), an algorithm for BP neural network optimized particle swarm optimization (PSOBPNN) is proposed. In the algorithm, PSO is used to obtain better network initial threshold and weight to compensate the defect of connection weight and thresholds of BPNN, thus it can make BPNN have faster convergence and greater learning ability. The efficiency of the proposed prediction method is tested by the simulation of the chaotic time series for Lori mapping. The simulations results show that the proposed method has higher forecasting accuracy compared with the BPNN, so it is proved that the algorithm is feasible and effective in the chaotic time series prediction.


2014 ◽  
Vol 511-512 ◽  
pp. 927-930
Author(s):  
Shuai Zhang ◽  
Hai Rui Wang ◽  
Jin Huang ◽  
He Liu

In the paper, the forecast problems of wind speed are considered. In order to enhance the redaction accuracy of the wind speed, this article is about a research on particle swarm optimization least square support vector machine for short-term wind speed prediction (PSO-LS-SVM). Firstly, the prediction models are built by using least square support vector machine based on particle swarm optimization, this model is used to predict the wind speed next 48 hours. In order to further improve the prediction accuracy, on this basis, introduction of the offset optimization method. Finally large amount of experiments and measurement data comparison compensation verify the effectiveness and feasibility of the research on particle swarm optimization least square support vector machine for short-term wind speed prediction, Thereby reducing the short-term wind speed prediction error, very broad application prospects.


Sign in / Sign up

Export Citation Format

Share Document