Task Offloading for Mixed Cloud/Fog Computing in Vehicular Network Using Genetic Particle Swarm Optimization

Author(s):  
Youchao Deng ◽  
Ping Wang ◽  
Lin Li
2021 ◽  
Author(s):  
Jun Cheng ◽  
Dejun Guan

Abstract As a technology integrated with Internet of Things (IoT), mobile edge computing (MEC) can provide real-time and low latency services to the underlying network, and improve the storage and computation ability of the networks instead of central cloud infrastructure. In Mobile Edge Computing based Internet of Vehicle(MEC-IoV), the vehicle users can deliver their tasks to the associated MEC servers Based on offloading policy, which improves the resource utilization and computation performance greatly. However, how to evaluate the impact of uncertain interconnection between the vehicle users and MEC servers on offloading decision-making and avoid serious degradation of the offloading efficiency are important problems to be solved. In this paper, a task-offloading decision mechanism with particle swarm optimization for IoV-based edge computing is proposed. First, a mathematical model to calculate the computation offloading cost for cloud-edge computing system is defined. Then, the particle swarm optimization (PSO) is applied to convert the offloading of task into the process and obtain the optimal offloading strategy. Furthermore, to avoid falling into local optimization, the inertia weight factor is designed to change adaptively with the value of the objective function. The experimental results show that the proposed offloading strategy can effectively reduce the energy consumption of terminal devices while guarantee the service quality of users.


Author(s):  
Jun Cheng ◽  
Dejun Guan

AbstractAs a technology integrated with Internet of things, mobile edge computing (MEC) can provide real-time and low-latency services to the underlying network and improve the storage and computation ability of the networks instead of central cloud infrastructure. In mobile edge computing-based Internet of Vehicle (MEC-IoV), the vehicle users can deliver their tasks to the associated MEC servers based on offloading policy, which improves the resource utilization and computation performance greatly. However, how to evaluate the impact of uncertain interconnection between the vehicle users and MEC servers on offloading decision-making and avoid serious degradation of the offloading efficiency are important problems to be solved. In this paper, a task-offloading decision mechanism with particle swarm optimization for MEC-IoV is proposed. First, a mathematical model to calculate the computation offloading cost for cloud-edge computing system is defined. Then, the particle swarm optimization is applied to convert the offloading of task into the process and obtain the optimal offloading strategy. Furthermore, to avoid falling into local optimization, the inertia weight factor is designed to change adaptively with the value of the objective function. The experimental results show that the proposed offloading strategy can effectively reduce the energy consumption of terminal devices while guarantee the service quality of users.


Author(s):  
Qian You ◽  
Bing Tang

AbstractAs a new form of computing based on the core technology of cloud computing and built on edge infrastructure, edge computing can handle computing-intensive and delay-sensitive tasks. In mobile edge computing (MEC) assisted by 5G technology, offloading computing tasks of edge devices to the edge servers in edge network can effectively reduce delay. Designing a reasonable task offloading strategy in a resource-constrained multi-user and multi-MEC system to meet users’ needs is a challenge issue. In industrial internet of things (IIoT) environment, considering the rapid increase of industrial edge devices and the heterogenous edge servers, a particle swarm optimization (PSO)-based task offloading strategy is proposed to offload tasks from resource-constrained edge devices to edge servers with energy efficiency and low delay style. A multi-objective optimization problem that considers time delay, energy consumption and task execution cost is proposed. The fitness function of the particle represents the total cost of offloading all tasks to different MEC servers. The offloading strategy based on PSO is compared with the genetic algorithm (GA) and the simulated annealing algorithm (SA) through simulation experiments. The experimental results show that the task offloading strategy based on PSO can reduce the delay of the MEC server, balance the energy consumption of the MEC server, and effectively realize the reasonable resource allocation.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document