Robotic 3D Structured Light Scanning System Based on External Axle

Author(s):  
Huang Jin ◽  
Ma Zi ◽  
Hu Ying ◽  
Wang Yang
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jianying Yuan ◽  
Qiong Wang ◽  
Xiaoliang Jiang ◽  
Bailin Li

The multiview 3D data registration precision will decrease with the increasing number of registrations when measuring a large scale object using structured light scanning. In this paper, we propose a high-precision registration method based on multiple view geometry theory in order to solve this problem. First, a multiview network is constructed during the scanning process. The bundle adjustment method from digital close range photogrammetry is used to optimize the multiview network to obtain high-precision global control points. After that, the 3D data under each local coordinate of each scan are registered with the global control points. The method overcomes the error accumulation in the traditional registration process and reduces the time consumption of the following 3D data global optimization. The multiview 3D scan registration precision and efficiency are increased. Experiments verify the effectiveness of the proposed algorithm.


Author(s):  
Yuhang Yang ◽  
Siyuan Chen ◽  
Letao Wang ◽  
Jingying He ◽  
Shang-Ming Wang ◽  
...  

Abstract High-resolution 3D measurement is crucial for a wide range of applications in manufacturing. With the recent development of optical technologies, the performance of many 3D scanning systems has entered the practical range for object digitizing, reverse engineering, quality control, and many other manufacturing applications. In order to extend the measurement capability to reflective or transparent surfaces, a common practice for reducing the unwanted reflection and refraction is to coat the surfaces with micro-particle spray. There is, however, limited discussion about the influence of coating spray on the resulted measurement precision of 3D optical scanning systems, and due to lack of standardized procedure for spray coating, the variability caused by different operators in surface measurement remains to be examined. This paper investigates the 3D data acquisition of spray-coated surfaces with a structured-light scanning system through experiments and statistical analysis. Both surface roughness and spatial statistics are used to quantitatively evaluate the characteristics of the 3D measurement system. Gauge R&R study is conducted to determine measurement repeatability and reproducibility. The results demonstrate that both the number of spray pass and the skill of the individual operator can significantly affect the performance of the structured-light scanning system. Other pertinent suggestions for the operation of 3D optical scanning systems with spray coating are also provided.


2020 ◽  
Vol 32 ◽  
pp. 100987 ◽  
Author(s):  
Kwangwoo Wi ◽  
Vignesh Suresh ◽  
Kejin Wang ◽  
Beiwen Li ◽  
Hantang Qin

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jianying Yuan ◽  
Qiong Wang ◽  
Bailin Li

3D (three-dimensional) structured light scanning system is widely used in the field of reverse engineering, quality inspection, and so forth. Camera calibration is the key for scanning precision. Currently, 2D (two-dimensional) or 3D fine processed calibration reference object is usually applied for high calibration precision, which is difficult to operate and the cost is high. In this paper, a novel calibration method is proposed with a scale bar and some artificial coded targets placed randomly in the measuring volume. The principle of the proposed method is based on hierarchical self-calibration and bundle adjustment. We get initial intrinsic parameters from images. Initial extrinsic parameters in projective space are estimated with the method of factorization and then upgraded to Euclidean space with orthogonality of rotation matrix and rank 3 of the absolute quadric as constraint. Last, all camera parameters are refined through bundle adjustment. Real experiments show that the proposed method is robust, and has the same precision level as the result using delicate artificial reference object, but the hardware cost is very low compared with the current calibration method used in 3D structured light scanning system.


2021 ◽  
Vol 7 (1) ◽  
pp. 51-83
Author(s):  
Davide Tanasi ◽  
Stephan Hassam ◽  
Kaitlyn Kingsland ◽  
Paolo Trapani ◽  
Matthew King ◽  
...  

Abstract The archaeological site of the Domus Romana in Rabat, Malta was excavated almost 100 years ago yielding artefacts from the various phases of the site. The Melite Civitas Romana project was designed to investigate the domus, which may have been the home of a Roman Senator, and its many phases of use. Pending planned archaeological excavations designed to investigate the various phases of the site, a team from the Institute for Digital Exploration from the University of South Florida carried out a digitization campaign in the summer of 2019 using terrestrial laser scanning and aerial digital photogrammetry to document the current state of the site to provide a baseline of documentation and plan the coming excavations. In parallel, structured light scanning and photogrammetry were used to digitize 128 artefacts in the museum of the Domus Romana to aid in off-site research and create a virtual museum platform for global dissemination.


Sign in / Sign up

Export Citation Format

Share Document