scholarly journals A High-Precision Registration Technology Based on Bundle Adjustment in Structured Light Scanning System

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jianying Yuan ◽  
Qiong Wang ◽  
Xiaoliang Jiang ◽  
Bailin Li

The multiview 3D data registration precision will decrease with the increasing number of registrations when measuring a large scale object using structured light scanning. In this paper, we propose a high-precision registration method based on multiple view geometry theory in order to solve this problem. First, a multiview network is constructed during the scanning process. The bundle adjustment method from digital close range photogrammetry is used to optimize the multiview network to obtain high-precision global control points. After that, the 3D data under each local coordinate of each scan are registered with the global control points. The method overcomes the error accumulation in the traditional registration process and reduces the time consumption of the following 3D data global optimization. The multiview 3D scan registration precision and efficiency are increased. Experiments verify the effectiveness of the proposed algorithm.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jianying Yuan ◽  
Qiong Wang ◽  
Bailin Li

3D (three-dimensional) structured light scanning system is widely used in the field of reverse engineering, quality inspection, and so forth. Camera calibration is the key for scanning precision. Currently, 2D (two-dimensional) or 3D fine processed calibration reference object is usually applied for high calibration precision, which is difficult to operate and the cost is high. In this paper, a novel calibration method is proposed with a scale bar and some artificial coded targets placed randomly in the measuring volume. The principle of the proposed method is based on hierarchical self-calibration and bundle adjustment. We get initial intrinsic parameters from images. Initial extrinsic parameters in projective space are estimated with the method of factorization and then upgraded to Euclidean space with orthogonality of rotation matrix and rank 3 of the absolute quadric as constraint. Last, all camera parameters are refined through bundle adjustment. Real experiments show that the proposed method is robust, and has the same precision level as the result using delicate artificial reference object, but the hardware cost is very low compared with the current calibration method used in 3D structured light scanning system.


2021 ◽  
Vol 13 (21) ◽  
pp. 4457
Author(s):  
Bin Cui ◽  
Wei Tao ◽  
Hui Zhao

Three-dimensional reconstruction technology has demonstrated broad application potential in the industrial, construction, medical, forestry, agricultural, and pastural sectors in the last few years. High-quality digital point cloud information exists to help researchers to understand objects and environments. However, current research mainly focuses on making adaptive adjustments to various scenarios and related issues in the application of this technology rather than looking for further improvements and enhancements based on technical principles. Meanwhile, a review of approaches, algorithms, and techniques for high-precision 3D reconstruction utilizing line-structured light scanning, which is analyzed from a deeper perspective of elementary details, is lacking. This paper takes the technological path as the logical sequence to provide a detailed summary of the latest development status of each key technology, which will serve potential users and new researchers in this field. The focus is placed on exploring studies reconstructing small-to-medium-sized objects, as opposed to performing large-scale reconstructions in the field.


Author(s):  
Yuhang Yang ◽  
Siyuan Chen ◽  
Letao Wang ◽  
Jingying He ◽  
Shang-Ming Wang ◽  
...  

Abstract High-resolution 3D measurement is crucial for a wide range of applications in manufacturing. With the recent development of optical technologies, the performance of many 3D scanning systems has entered the practical range for object digitizing, reverse engineering, quality control, and many other manufacturing applications. In order to extend the measurement capability to reflective or transparent surfaces, a common practice for reducing the unwanted reflection and refraction is to coat the surfaces with micro-particle spray. There is, however, limited discussion about the influence of coating spray on the resulted measurement precision of 3D optical scanning systems, and due to lack of standardized procedure for spray coating, the variability caused by different operators in surface measurement remains to be examined. This paper investigates the 3D data acquisition of spray-coated surfaces with a structured-light scanning system through experiments and statistical analysis. Both surface roughness and spatial statistics are used to quantitatively evaluate the characteristics of the 3D measurement system. Gauge R&R study is conducted to determine measurement repeatability and reproducibility. The results demonstrate that both the number of spray pass and the skill of the individual operator can significantly affect the performance of the structured-light scanning system. Other pertinent suggestions for the operation of 3D optical scanning systems with spray coating are also provided.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5400
Author(s):  
Jian Sun ◽  
Haili Sun ◽  
Ruofei Zhong ◽  
Yulong Han

Subway structure safety detection is an important method to ensure the safe operation of trains. Efficient, high-precision, and automatic tunnel clearance detection is the key to ensure safe operations. This study introduces a mobile tunnel scanning system that integrates a scanner, an inertial measurement unit (IMU), and a rail car. Global Navigation Satellite System (GNSS) time and system hardware calibration are used to synchronize time and space information of the system; the attitude and speed are corrected using the control points from the tunnel to improve the accuracy of absolute positioning. The section coordinate system is converted using the control points and system calibration parameters to complete the tunnel clearance inspection, and the distance between the nearest point of the section and the clear height of the vault is given. Taking Fengxi Road’s Bashan tunnel section of Chongqing Metro Line 5 as an example, the overall system accuracy was tested. The accuracy of chord line measurements was within 1 mm, the internal coincidence accuracy of repeated measurements of the vault clear height was 1.1 mm, the internal coincidence accuracy of repeated measurements of the closest gauge point was 4.8 mm, and the system calibration accuracy was approximately 2 mm. Compared with the existing scheme, the system combines absolute measurement and relative measurement mode to judge the structural safety of tunnel section from multiple angles, high precision, and high efficiency.


2020 ◽  
Vol 32 ◽  
pp. 100987 ◽  
Author(s):  
Kwangwoo Wi ◽  
Vignesh Suresh ◽  
Kejin Wang ◽  
Beiwen Li ◽  
Hantang Qin

Sign in / Sign up

Export Citation Format

Share Document