Research on Control Strategy for Regenerative Braking of a Plug-In Hybrid Electric City Public Bus

Author(s):  
Li Yu-shan ◽  
Zeng Qing-liang ◽  
Wang Cheng-long ◽  
Wang Liang
2014 ◽  
Vol 926-930 ◽  
pp. 743-746 ◽  
Author(s):  
Jing Ming Zhang ◽  
Jin Long Liu ◽  
Ming Zhi Xue

The introduction of driving motors brings in the function of regenerative braking for Hybrid Electric Vehicles (HEV). In order to study the further information of regenerative braking, the relation between the degree of mixing in HEV and the recovery rate of regenerative braking was analyzed. The study object was the front-wheel driving HEV with the wire-control composite regenerative braking control strategy. Conclusions were deduced through the theoretical derivation. The braking model was established on the platform in MATLAB/SIMULINK and it was simulated within a HEV. The results indicate that the recovery rate would increase if the degree of mixing rises.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guodong Yin ◽  
XianJian Jin

A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC) for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC), and the motor speed, a fuzzy logic control strategy (FLC) is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.


Author(s):  
Jianjun Hu ◽  
Zihan Guo ◽  
Hang Peng ◽  
Dawei Zheng

At present, the regenerative braking control strategies for hybrid electric vehicles equipped with continuously variable transmission (CVT) mainly focus on improving the regenerative braking efficiency. But the influence of dynamic change of the CVT ratio is not considered with regard to the intended braking effect. For a CVT ratio control strategy based on steady-state optimal efficiency, the performance of motor-only braking and engine/motor combined braking modes are analyzed. The analysis of these modes shows that actual braking strength deviates from that required during the dynamic braking process. After analyzing the dynamic characteristics of a transmission system, a CVT ratio control strategy based on the limitations of the ratio rate of change is proposed, with the use of a discrete exhaustive optimization method. The simulation results show that, under a variety of braking conditions, the proposed regenerative braking control strategy can make the actual braking strength follow the requirements and recover more braking energy.


Sign in / Sign up

Export Citation Format

Share Document