Thermal Properties and Heat Transfer in Concrete Filled Steel Tube Reinforced Concrete Columns Exposed to Fire

Author(s):  
Kai Xiang ◽  
Guo-Hui Wang ◽  
Yan-Chong Pan
2014 ◽  
Vol 644-650 ◽  
pp. 5019-5022
Author(s):  
Xue Feng Liu ◽  
Qing Xin Ren ◽  
Lian Guang Jia

In this paper, temperature field analysis of concrete filled steel tube reinforced concrete columns in fire has been carried on. A finite element model for concrete filled steel tube reinforced concrete columns in fire is developed by ABAQUS. The cross-sectional temperature field distribution regularity of concrete filled steel tube reinforced concrete columns in fire has been obtained. Parameter analysis such as fire duration time and steel ratio on the column section temperature field is conducted, and this provide the reference for the further analysis of concrete filled steel tube reinforced concrete columns.


2014 ◽  
Vol 578-579 ◽  
pp. 772-775
Author(s):  
Wan Qing Yu ◽  
Qing Xin Ren ◽  
Lian Guang Jia

In this paper, a further research has been carried on mechanical properties of concrete filled steel tube reinforced concrete columns after exposure to fire. A finite element analysis (FEA) model for concrete filled steel tube reinforced concrete columns after exposure to fire under axial compression is developed by ABAQUS. The temperature of cross-section element after exposure to fire has been obtained. The FEA model of temperature field is then used to investigate the mechanism of such composite columns further. Influences of parameters on Load-bearing Capacity such as fire duration time and steel ratio were analyzed. The work in this paper provides a basis for further theoretical study on concrete filled steel tube reinforced concrete columns after exposure to fire.


2010 ◽  
Vol 163-167 ◽  
pp. 2267-2273 ◽  
Author(s):  
Hong Ying Dong ◽  
Wan Lin Cao ◽  
Jian Wei Zhang

Two 1/6 scale core walls, including one RC core wall with steel tube-reinforced concrete columns and concealed steel trusses and one conventional RC core wall, were tested under eccentric horizontal cyclic loading. The load-capacity, ductility, hysteresis characteristics, stiffness, stiffness deterioration process, energy dissipation and damage characteristics of the two specimens were compared and discussed in this paper. It shows that the seismic performance of the RC core walls under combined action could be improved by setting the concealed steel trusses in the walls and using the steel tube-reinforced concrete columns as the boundary elements.


2005 ◽  
Vol 17 (6) ◽  
pp. 871-878 ◽  
Author(s):  
Chadon Lee ◽  
Yeong-Soo Shin ◽  
Seung-Whan Lee ◽  
Chang-Eun Lee

Sign in / Sign up

Export Citation Format

Share Document