Sliding mode direct torque control with new integrator for stator flux estimation in IPMSM

Author(s):  
Xianqing Cao ◽  
Liping Fan ◽  
Yidong Zhu
2012 ◽  
Vol 38 ◽  
pp. 572-577
Author(s):  
Hassan Farhan Rashag ◽  
S.P. Koh ◽  
Ahmed N. Abdalla ◽  
Nadia M.L. Tan ◽  
K.H. Chong ◽  
...  

Author(s):  
Yahya Ahmed Alamri ◽  
Nik Rumzi Nik Idris ◽  
Ibrahim Mohd. Alsofyani ◽  
Tole Sutikno

<p>Stator flux estimation using voltage model is basically the integration of the induced stator back electromotive force (emf) signal. In practical implementation the pure integration is replaced by a low pass filter to avoid the DC drift and saturation problems at the integrator output because of the initial condition error and the inevitable DC components in the back emf signal. However, the low pass filter introduces errors in the estimated stator flux which are significant at frequencies near or lower than the cutoff frequency. Also the DC components in the back emf signal are amplified at the low pass filter output by a factor equals to . Therefore, different integration algorithms have been proposed to improve the stator flux estimation at steady state and transient conditions. In this paper a new algorithm for stator flux estimation is proposed for direct torque control (DTC) of induction motor drives. The proposed algorithm is composed of a second order high pass filter and an integrator which can effectively eliminates the effect of the error initial condition and the DC components. The amplitude and phase errors compensation algorithm is selected such that the steady state frequency response amplitude and phase angle are equivalent to that of the pure integrator and the multiplication and division by stator frequency are avoided. Also the cutoff frequency selection is improved; even small value can filter out the DC components in the back emf signal. The simulation results show the improved performance of the induction motor direct torque control drive with the proposed stator flux estimation algorithm. The simulation results are verified by the experimental results.</p>


Author(s):  
Hamdi Echeikh ◽  
Hichem Kesraoui ◽  
Ramzi Trabelsi ◽  
Atif Iqbal ◽  
Mohamed Faouzi Mimouni

Purpose This paper aims to deal with direct torque controller when the five-phase induction motor drive in faulty operation. Precisely, open-phase fault condition is contemplated. Also, the DTC is combined with a speed-adaptive variable-structure observer based on sliding mode observer. Design methodology/approach Two novel features are presented. First, the concept of the virtual voltage vector is presented, which eliminates low-frequency harmonic currents and simplifies analysis. Second, speed information is introduced into the selection of the inverter states. Findings Direct torque control (DTC) is largely used in traditional three-phase drives as a backup to rotor-stator flux-oriented methods. The classic DTC strategy was primarily designed on the base of hysteresis controllers to control two independent variables (speed, torque and flux). Due to the additional degrees of freedom offered by multiphase machine, extensive works have been extended on the ensemble five-phase drives in healthy operation. In addition, the ability to continue the operation in faulty conditions is considering one of the main advantages of multiphase machines. One can find in the literature different approaches treating this subject. The applicability of DTC after the appearing of a fault has not been enclosed in the literature. Originality/value Theoretical development is presented in details followed by simulation results using Matlab/Simulink to analyze the performance of the drive, comparing with the behavior during healthy situation.


2015 ◽  
Vol 719-720 ◽  
pp. 461-469
Author(s):  
Yue Dou Pan ◽  
Ze Ping Chen ◽  
Hua De Li

This paper proposes a stator flux estimation method for induction motor based on Prescribed Convergence Law algorithm. A stator flux observer is designed and applied for direct torque control (DTC) of induction motor. The observer tracks stator current and its differential with Prescribed Convergence Law algorithm of second order sliding mode in order to estimate rotor flux, and then estimate stator flux using the relationship between stator flux and rotor flux. This paper takes the differential of estimated flux error as disturbance and divides the MIMO (Multiple Input Multiple Output) observer model into two separate SISO (single input single output) systems, which simplifies the stability analysis. The observer is applied to DTC of induction motor and achieves a good control effect. Simulation experiment results validate the proposed method.


Sign in / Sign up

Export Citation Format

Share Document