Competitive learning algorithm for the fuzzy rule optimization

Author(s):  
Fengzhi Dai ◽  
Long Li ◽  
Naoki Kushida ◽  
Baolong Zhang
Author(s):  
DAVID GARCIA ◽  
ANTONIO GONZALEZ ◽  
RAUL PEREZ

In system identification process often a predetermined set of features is used. However, in many cases it is difficult to know a priori whether the selected features were really the more appropriate ones. This is the reason why the feature construction techniques have been very interesting in many applications. Thus, the current proposal introduces the use of these techniques in order to improve the description of fuzzy rule-based systems. In particular, the idea is to include feature construction in a genetic learning algorithm. The construction of attributes in this study will be restricted to the inclusion of functions defined on the initial attributes of the system. Since the number of functions and the number of attributes can be very large, a filter model, based on the use of information measures, is introduced. In this way, the genetic algorithm only needs to explore the particular new features that may be of greater interest to the final identification of the system. In order to manage the knowledge provided by the new attributes based on the use of functions we propose a new model of rule by extending a basic learning fuzzy rule-based model. Finally, we show the experimental study associated with this work.


Author(s):  
Peng Zhang ◽  
Jianye Hao ◽  
Weixun Wang ◽  
Hongyao Tang ◽  
Yi Ma ◽  
...  

Reinforcement learning agents usually learn from scratch, which requires a large number of interactions with the environment. This is quite different from the learning process of human. When faced with a new task, human naturally have the common sense and use the prior knowledge to derive an initial policy and guide the learning process afterwards. Although the prior knowledge may be not fully applicable to the new task, the learning process is significantly sped up since the initial policy ensures a quick-start of learning and intermediate guidance allows to avoid unnecessary exploration. Taking this inspiration, we propose knowledge guided policy network (KoGuN), a novel framework that combines human prior suboptimal knowledge with reinforcement learning. Our framework consists of a fuzzy rule controller to represent human knowledge and a refine module to finetune suboptimal prior knowledge. The proposed framework is end-to-end and can be combined with existing policy-based reinforcement learning algorithm. We conduct experiments on several control tasks. The empirical results show that our approach, which combines suboptimal human knowledge and RL, achieves significant improvement on learning efficiency of flat RL algorithms, even with very low-performance human prior knowledge.


Author(s):  
Michiharu Maeda ◽  
◽  
Noritaka Shigei ◽  
Hiromi Miyajima ◽  
Kenichi Suzaki ◽  
...  

Two reductions in competitive learning founded on distortion standards are discussed from the viewpoint of generating necessary and appropriate reference vectors under the condition of their predetermined number. The first approach is termed the segmental reduction and competitive learning algorithm. The algorithm is presented as follows: First, numerous reference vectors are prepared and the algorithm is processed under competitive learning. Next, reference vectors are sequentially eliminated to reach their prespecified number based on the partition error criterion. The second approach is termed the general reduction and competitive learning algorithm. The algorithm is presented as follows: First, numerous reference vectors are prepared and the algorithm is processed under competitive learning. Next, reference vectors are sequentially erased based on the average distortion criterion. Experimental results demonstrate the effectiveness of our approaches compared to conventional techniques in average distortion. The two approaches are applied to image coding to determine their feasibility in quality and computation time.


Sign in / Sign up

Export Citation Format

Share Document