Smart Home Energy Management Optimization Method Considering ESS and PEV

Author(s):  
Xuan Hou ◽  
Jun Wang ◽  
Peng Wang ◽  
Tao Wang
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4398
Author(s):  
Yiqi Li ◽  
Jing Zhang ◽  
Zhoujun Ma ◽  
Yang Peng ◽  
Shuwen Zhao

With the development of integrated energy systems (IES), the traditional demand response technologies for single energy that do not take customer satisfaction into account have been unable to meet actual needs. Therefore, it is urgent to study the integrated demand response (IDR) technology for integrated energy, which considers consumers’ willingness to participate in IDR. This paper proposes an energy management optimization method for community IES based on user dominated demand side response (UDDSR). Firstly, the responsive power loads and thermal loads are modeled, and aggregated using UDDSR bidding optimization. Next, the community IES is modeled and an aggregated building thermal model is introduced to measure the temperature requirements of the entire community of users for heating. Then, a day-ahead scheduling model is proposed to realize the energy management optimization. Finally, a penalty mechanism is introduced to punish the participants causing imbalance response against the day-ahead IDR bids, and the conditional value-at-risk (CVaR) theory is introduced to enhance the robustness of the scheduling model under different prediction accuracies. The case study demonstrates that the proposed method can reduce the operating cost of the community under the premise of fully considering users’ willingness, and can complete the IDR request initiated by the power grid operator or the dispatching department.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2304 ◽  
Author(s):  
Mingfu Li ◽  
Guan-Yi Li ◽  
Hou-Ren Chen ◽  
Cheng-Wei Jiang

To reduce the peak load and electricity bill while preserving the user comfort, a quality of experience (QoE)-aware smart appliance control algorithm for the smart home energy management system (sHEMS) with renewable energy sources (RES) and electric vehicles (EV) was proposed. The proposed algorithm decreases the peak load and electricity bill by deferring starting times of delay-tolerant appliances from peak to off-peak hours, controlling the temperature setting of heating, ventilation, and air conditioning (HVAC), and properly scheduling the discharging and charging periods of an EV. In this paper, the user comfort is evaluated by means of QoE functions. To preserve the user’s QoE, the delay of the starting time of a home appliance and the temperature setting of HVAC are constrained by a QoE threshold. Additionally, to solve the trade-off problem between the peak load/electricity bill reduction and user’s QoE, a fuzzy logic controller for dynamically adjusting the QoE threshold to optimize the user’s QoE was also designed. Simulation results demonstrate that the proposed smart appliance control algorithm with a fuzzy-controlled QoE threshold significantly reduces the peak load and electricity bill while optimally preserving the user’s QoE. Compared with the baseline case, the proposed scheme reduces the electricity bill by 65% under the scenario with RES and EV. Additionally, compared with the method of optimal scheduling of appliances in the literature, the proposed scheme achieves much better peak load reduction performance and user’s QoE.


Sign in / Sign up

Export Citation Format

Share Document