Mathematical Modeling of Currents in Secondary Element of Linear Induction Motor with Transverse Magnetic Flux for Magnetic-Levitation Transport

Author(s):  
Vladimir A. Solomin ◽  
Andrei V. Solomin ◽  
Larisa L. Zamshina
2017 ◽  
Vol 3 (4) ◽  
pp. 107-126
Author(s):  
Andrey V Solomin

The problems of improvement of modern types of transport and creation of new ones are important and topical for the human society development. One of the most promising and environmentally-friendly modes of transport is the high-speed maglev transport, moving at speeds of approximately 500 km/h. Objective. Justification of linear induction motor, development and research of various constructions of this type of motors. Methods. Description of linear induction motor with longitudinal and transverse magnetic flux for combined traction and lateral stabilisation system of maglev transport, having increased lateral stabilisation forces. The mathematical modelling of magnetomotive force (MF) in the air gap of traction linear motor of this type has been conducted. To analyse the MF the assumption has been made about even distribution of magnetic induction in the air gap in transverse direction and its sinusoidal longitudinal direction, making it possible to develop new mathematical model of MF distribution in the air gap of linear induction motor with longitudinal and transverse magnetic flux Results. The developed mathematical model for calculation of MF on traction linear machine will enable increasing accuracy of traction and lateral stabilisation combined system forces for maglev transport. The same relates to mutual location of inductor to the secondary element. All this proves the successful ten-year commercial operation experience of magnetically suspended train carrying passengers from an airport to Shanghai, P.R. China. The values of traction and lateral stabilisation forces of linear induction motor with longitudinal and transverse magnetic flux is greatly influenced by the character of current distribution in the secondary element. The character itself is influenced by MF distribution in the air gap.


2018 ◽  
Vol 4 (2) ◽  
pp. 167-179
Author(s):  
Vladimir A. Solomin ◽  
Andrei V. Solomin ◽  
Victor V. Koledov ◽  
Nadezda A. Trubitsina

Background: Traction linear induction motors (LIM) at the current stage of human society development are the most promising for high-speed magnetic-levitation transport (MLT) and are already used in a number of commercial projects. Linear induction motors can be executed with longitudinal, transverse and longitudinal-transverse magnetic flux and have a large number of design options. Aim: In addition to traction efforts, LIM develops the forces of magnetic-levitation and lateral stabilization (self-stabilization). The efforts of magnetic-levitation of linear induction motors with longitudinal and transverse magnetic flux are very significant in the zone of large slides (at low speeds) and decrease with increasing speed of the magnetic-levitation transport. To a lesser extent, the decrease in slip (at high speeds) affects the magnetic-levitation forces developed by a number of design variants of linear induction motors with a longitudinal-transverse magnetic flux, in which magnetic fields traveling in a transverse direction towards each other are additionally used. This is explained by the fact that at high and low velocities MLT, the LIM slip will be equal to unity relatively oppositely running in the transverse direction of the magnetic fields and the magnetic suspension forces will be maximum. Materials and Methods: Running towards each other in the transverse direction of the MLT movement, magnetic fields cross the electrically conductive secondary element (playing the role of the track structure of the high-speed transport system) and induce electromotive forces in it, under the influence of which currents will flow. Results: As a result, cross counter-directional mechanical forces are created which, in the symmetrical arrangement of the MLT crew relative to the track structure, are mutually balanced and do not have any effect on the motion of the magnetic-levitation transport. At lateral (transverse) displacement of the high-speed transport on the magnetic suspension relative to the track structure, the equilibrium of the transverse mechanical forces is disrupted and, under the effect of the effort difference, the MLT crew will be automatically returned to the original symmetrical position. Conclusion: The distribution of magnetomotive forces (MMF) of a linear induction motor with a longitudinal-transverse magnetic flux, whose magnetic system is formed by the combination of longitudinally and transverse laminated cores, on the teeth of which the coils of a concentrated three-phase winding are located, is considered. The relations are represented in the form of a double Fourier series for calculating the resultant MMF value in the air gap of a linear induction motor with a longitudinal-transverse magnetic flux.


2020 ◽  
Vol 6 (1) ◽  
pp. 120-128
Author(s):  
Anastasia A. Chekhova ◽  
Andrei V. Solomin

Background: Currently, great attention is paid to the problem of increasing the efficiency of transport in cities. The use of urban Maglev transport with linear traction motors will improve the transport infrastructure of megacities. Aim: The use of magnetic-levitation transport with linear induction motors (LIM) is proposed. It is proposed to use traction linear induction motors (LIM) for urban Maglev transport, increasing the safety of a new type of transport. Materials and Methods: In this work, the design of a linear traction induction motor was proposed, which can increase lateral stabilization forces and safety of traffic by performing the lateral parts of the secondary element of a linear induction motor in the form of short-circuited windings. Results: Improving efforts of the lateral stabilization improve crew safety.


2017 ◽  
Vol 3 (4) ◽  
pp. 127-149 ◽  
Author(s):  
Vladimir A Solomin ◽  
Anastasia A Bichilova ◽  
Larisa L Zamshina ◽  
Nadezhda A Trybitsina

The article deals with linear induction motor (LIM) with a squirrel-cage winding of the secondary element (SE), which functions as the armature of the machine. Linear location of squirrel-cage winding of the secondary element of LIM allowed suggesting a number of options for the regulation of the winding resistance of SE. Objective. Development and research of LIM with adjustable winding resistance of the secondary element for magnetic levitation transport, and the study of the properties of adjustable LIM. At the modern level of development of the electrical engineering, asynchronous electric drive and magnetic levitation transport, the primary method of changing the frequency rotation of motor and speed of linear motion of high-speed transport vehicles is frequency control. Frequency control allows changing the frequency of rotation of the machine and linear speed of LIM smoothly and in broad diapason. The high cost of static electronic converters of high power limits the large-scale application of frequency control. The increase of the current frequency also leads to lower torque and traction. Results. According to the authors, the application of the adjustable linear induction motors with variable resistances of short-circuited windings of the secondary elements will allow to expand the range of control of LIM, intended for high-speed magnetic levitation transport with the realisation of large traction, including the start (starting the vehicle) by means of current displacement in the groove of the secondary element of the LIM. Conclusion. The linear induction motors of this type, as well as the calculation of the magnetic field in the groove of the secondary element, and evaluation of the influence of the current displacement on the starting and controlling features of the machine are considered.


2016 ◽  
Vol 9 (2) ◽  
pp. 41-45 ◽  
Author(s):  
Sang Uk Park ◽  
Chan Yong Zun ◽  
Doh-Young Park ◽  
Jaewon Lim ◽  
Hyung Soo Mok

2019 ◽  
Vol 5 (2) ◽  
pp. 60-69 ◽  
Author(s):  
Vladimir A. Solomin ◽  
Andrei V. Solomin ◽  
Anastasia A. Chekhova ◽  
Larisa L. Zamchina ◽  
Nadezda A. Trubitsina

Background: At high speeds of motion of the magnetic-levitation transport (MLT), linear induction motors (LIM) have a secondary longitudinal edge effect (SLEE). SLEE occurs when magnetic field of inductor interacts with the currents of the secondary element (SE) outside the MLT crew. SLEE reduces the efficiency of traction LIM. Therefore, the task of reducing the influence of SLEE is relevant. Aim: Development and research of a linear induction motor without a secondary longitudinal edge effect. Methods: To achieve this aim, new designs of linear induction motors have been proposed, which do not have a SLEE. The secondary element of the LIM (track structure of the MLT) is made of cylindrical conductive rods installed with the possibility of rotation. Traction LIM of the MLT equipped with two brushes that close the rods of the SE within the length of the inductor. When the MLT crew moves, the rods outside the inductor are not closed by brushes and there is no current in them. There will be no SLEE. Another method to solve this problem is using reed switches to close and open the rods of the secondary element. Results: The possibility of increasing the efficiency of the LIM has been achieved.


Sign in / Sign up

Export Citation Format

Share Document