Starter Generator Design Development for Modern Micro Gas Turbine Plant

Author(s):  
Nikolay Neustroev ◽  
Anton Kotov ◽  
I. A. Chuyduk
2021 ◽  
Vol 2 (43) ◽  
pp. 20-35
Author(s):  
Andrey V. Dologlonyan ◽  
◽  
Dmitriy S. Strebkov ◽  
Valeriy T. Matveenko ◽  
◽  
...  

The article presents the results obtained during the study of the characteristics of hybrid solar micro-gas turbine units with an integrated parabolocylindrical solar collector. The efficiency of a hybrid solar gas turbine plant depends both on the efficiency of the solar collector and the location of its integration, and on the efficiency of the gas turbine engine. (Research purpose) The research purpose is in studying hybrid solar gas turbine installations based on a parabolocylindrical focusing solar collector in combination with micro-gas turbine engines of various configurations to determine the most suitable match. (Materials and methods) The article considers four basic schemes of gas turbine engines running on organic fuel, their parameters and optimization results. The article presents the main climatic parameters for the study of the focusing solar collector, as well as the parameters of the collector itself and the main dependencies that determine its efficiency and losses. The place of integration of the focusing solar collector into the gas turbine plant was described and justified. (Results and discussion) Hybrid solar micro-gas turbine installations based on micro-gas turbine engines of a simple cycle, a simple cycle with heat recovery, a simple cycle with a turbocharger utilizer, a simple cycle with a turbocharger utilizer and heat recovery for tropical climate conditions were studied on the example of Abu Dhabi. (Conclusions) The most suitable configuration of micro-gas turbine engines for integrating a focusing solar collector is a combination of a simple cycle with a turbocharger utilizer and regeneration. The combination of micro-gas turbine engines of a simple cycle with a turbocharger heat recovery and heat recovery with an integrated focusing solar collector can relatively increase the average annual efficiency of fuel consumption of such installations in a tropical climate by 10-35 percent or more, while maintaining cogeneration capabilities.


2016 ◽  
Vol 8 (4) ◽  
pp. 115-123
Author(s):  
STIKA Laura Alina ◽  
◽  
POPESCU Jeni Alina ◽  
TOMESCU Sorin Gabriel ◽  
VILAG Valeriu-Alexandru ◽  
...  

2014 ◽  
Vol 659 ◽  
pp. 503-508
Author(s):  
Sorin Gabriel Vernica ◽  
Aneta Hazi ◽  
Gheorghe Hazi

Increasing the energy efficiency of a gas turbine plant can be achieved by exhaust gas heat recovery in a recovery boiler. Establishing some correlations between the parameters of the boiler and of the turbine is done usually based on mathematical models. In this paper it is determined from experimental point of view, the effectiveness of a heat recovery boiler, which operates together with a gas turbine power plant. Starting from the scheme for framing the measurement devices, we have developed a measurement procedure of the experimental data. For experimental data processing is applied the effectiveness - number of transfer unit method. Based on these experimental data we establish correlations between the recovery boiler effectiveness and the gas turbine plant characteristics. The method can be adapted depending on the type of flow in the recovery boiler.


2021 ◽  
pp. 5-17
Author(s):  
Sergey A. GANDZHA ◽  
◽  
Nikolay I. NEUSTROEV ◽  
Pavel A. TARANENKO ◽  
◽  
...  

The modern power industry is characterized by intense development of distributed generation, with which numerous sources of different capacities are connected into a single network. This makes it possible to improve the reliability of the entire system, since the probability of several sources to fail simultaneously is quite low. Electric generation based on high-speed gas turbine units accounts for a significant share in the overall balance, due to which scientific research and new engineering solutions in this area are important and relevant. An innovative design of a high-speed gas turbine unit based on a switched axial generator is proposed. This electrical machine has a diamagnetic armature, which eliminates magnetic losses, due to which better efficiency of the power unit is achieved and its design is simplified. The high speed of rotation and the presence of critical resonant rotor speeds generated the need to adopt appropriate engineering decisions in regard of its supports. A combined suspension involving the use of magnetic and gas-dynamic bearings is proposed. The magnetic bearings support the gas turbine unit operation at low speeds during its acceleration, and the gas-dynamic bearings support its operation at high nominal speed. The generator design and the combined suspension layout are shown. The numerical analyses of magnetic and gas-dynamic bearings for a gas turbine unit for a capacity of 100 kW and rotation speed of 70 000 rpm are given. The study results can be used for a series of gas turbine units with capacities ranging from 10 to 500 kW. In our opinion, this concept is competitive with modern analogs with a radial generator design.


Sign in / Sign up

Export Citation Format

Share Document