Research on safety evaluation of coal mine airflow system based on BP neural network

Author(s):  
Xue-qi Zhai ◽  
Jin-feng Wang ◽  
Li-jie Feng
2019 ◽  
Vol 9 (19) ◽  
pp. 4159
Author(s):  
Tan ◽  
Yang ◽  
Chang ◽  
Zhao

The accidents caused by roof pressure seriously restrict the improvement of mines and threaten production safety. At present, most coal mine pressure forecasting methods still rely on expert experience and engineering analogies. Artificial neural network prediction technology has been widely used in coal mines. This new approach can predict the surface pressure on the roof, which is of great significance in coal mine production safety. In this paper, the mining pressure mechanism of coal seam roofs is summarized and studied, and 60 sets of initial pressure data from multiple working surfaces in the Datong mining area are collected for gray correlation analysis. Finally, 12 parameters are selected as the input parameters of the model. Suitable back propagation (BP) and GA(genetic algorithm)-BP initial roof pressure prediction models are established for the Datong mining area and trained with MATLAB programming. By comparing the training results, we found that the optimized GA-BP model has a larger determination coefficient, smaller error, and greater stability. The research shows that the prediction method based on the GA-BP neural network model is relatively reliable and has broad engineering application prospects as an auxiliary decision-making tool for coal mine production safety.


2017 ◽  
Vol 14 (2) ◽  
pp. 155-158 ◽  
Author(s):  
Guimei Wang ◽  
Yong Shuo Zhang ◽  
Lijie Yang ◽  
Shuai Zhang

Purpose This paper aims to optimize the weighing control system and compensate weighing error for weighing control system of coal mine paste-filling weighing control system. Design/methodology/approach The process of the paste-filling weighing control system is analyzed and the mathematical model of the paste-filling material weight is established. Then, the back-propagation (BP) neural network is used to optimize the control system and compensate the weighing error. Findings Without the BP neural network, the weighing error of the paste-filling control system is more than 3 per cent, whereas after optimization with the BP neural network, the weighing error is less than 1 per cent. With the simulation results, it is seen that the weighing error of the paste-filling control system decreases and the accuracy of the weighing control system improves and optimizes. Originality/value The method can be further used to improve the control precision of the coal mine paste-filling system.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sen Tian ◽  
Jianhong Chen

With the development of mine industry, tailings storage facility (TSF), as the important facility of mining, has attracted increasing attention for its safety problems. However, the problems of low accuracy and slow operation rate often occur in current TSF safety evaluation models. This paper establishes a reasonable TSF safety evaluation index system and puts forward a new TSF safety evaluation model by combining the theories for the analytic hierarchy process (AHP) and improved back-propagation (BP) neural network algorithm. The varying proportions of cross validation were calculated, demonstrating that this method has better evaluation performance with higher learning efficiency and faster convergence speed and avoids the oscillation in the training process in traditional BP neural network method and other primary neural network methods. The entire analysis shows the combination of the two methods increases the accuracy and reliability of the safety evaluation, and it can be well applied in the TSF safety evaluation.


2014 ◽  
Vol 687-691 ◽  
pp. 2083-2086
Author(s):  
Chao Wang ◽  
Ying Jie Lian

Electric power industry is a basic industry of national economy, the power plant production safety related to people's life safety and property of the state, the power of reform and social stability, safety evaluation of power generation enterprises is an important guarantee of safety production in power generation enterprises.The paper establishes the BP neural network model, utilize BP neural network optimization ability and good fitting ability, combining the index system build, carries on the appraisal to the power generation enterprise security.Now the instance verification results show that BP neural network is applied in safety evaluation of power generation enterprises, not only can accurately evaluate the safety situation of power generation enterprises, and the speed of convergence process is quickly.


Sign in / Sign up

Export Citation Format

Share Document