Long term load forecasting and recommendations for China based on support vector regression

Author(s):  
Zhiheng Zhang ◽  
Shijie Ye
Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1166
Author(s):  
Bashir Musa ◽  
Nasser Yimen ◽  
Sani Isah Abba ◽  
Humphrey Hugh Adun ◽  
Mustafa Dagbasi

The prediction accuracy of support vector regression (SVR) is highly influenced by a kernel function. However, its performance suffers on large datasets, and this could be attributed to the computational limitations of kernel learning. To tackle this problem, this paper combines SVR with the emerging Harris hawks optimization (HHO) and particle swarm optimization (PSO) algorithms to form two hybrid SVR algorithms, SVR-HHO and SVR-PSO. Both the two proposed algorithms and traditional SVR were applied to load forecasting in four different states of Nigeria. The correlation coefficient (R), coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE) were used as indicators to evaluate the prediction accuracy of the algorithms. The results reveal that there is an increase in performance for both SVR-HHO and SVR-PSO over traditional SVR. SVR-HHO has the highest R2 values of 0.9951, 0.8963, 0.9951, and 0.9313, the lowest MSE values of 0.0002, 0.0070, 0.0002, and 0.0080, and the lowest MAPE values of 0.1311, 0.1452, 0.0599, and 0.1817, respectively, for Kano, Abuja, Niger, and Lagos State. The results of SVR-HHO also prove more advantageous over SVR-PSO in all the states concerning load forecasting skills. This paper also designed a hybrid renewable energy system (HRES) that consists of solar photovoltaic (PV) panels, wind turbines, and batteries. As inputs, the system used solar radiation, temperature, wind speed, and the predicted load demands by SVR-HHO in all the states. The system was optimized by using the PSO algorithm to obtain the optimal configuration of the HRES that will satisfy all constraints at the minimum cost.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lingyu Dong

In recent years, wireless sensor network technology has continued to develop, and it has become one of the research hotspots in the information field. People have higher and higher requirements for the communication rate and network coverage of the communication network, which also makes the problems of limited wireless mobile communication network coverage and insufficient wireless resource utilization efficiency become increasingly prominent. This article is aimed at studying a support vector regression method for long-term prediction in the context of wireless network communication and applying the method to regional economy. This article uses the contrast experiment method and the space occupancy rate algorithm, combined with the vector regression algorithm of machine learning. Research on the laws of machine learning under the premise of less sample data solves the problem of the lack of a unified framework that can be referred to in machine learning with limited samples. The experimental results show that the distance between AP1 and AP2 is 0.4 m, and the distance between AP2 and Client2 is 0.6 m. When BPSK is used for OFDM modulation, 2500 MHz is used as the USRP center frequency, and 0.5 MHz is used as the USRP bandwidth; AP1 can send data packets. The length is 100 bytes, the number of sent data packets is 100, the gain of Client2 is 0-38, the receiving gain of AP2 is 0, and the receiving gain of AP1 is 19. The support vector regression method based on wireless network communication for regional economic mid- and long-term predictions was completed well.


2016 ◽  
pp. 1161-1183 ◽  
Author(s):  
Tuncay Ozcan ◽  
Tarik Küçükdeniz ◽  
Funda Hatice Sezgin

Electricity load forecasting is crucial for electricity generation companies, distributors and other electricity market participants. In this study, several forecasting techniques are applied to time series modeling and forecasting of the hourly loads. Seasonal grey model, support vector regression, random forests, seasonal ARIMA and linear regression are benchmarked on seven data sets. A rolling forecasting model is developed and 24 hours of the next day is predicted for the last 14 days of each data set. This day-ahead forecasting model is especially important in day-ahead market activities and plant scheduling operations. Experimental results indicate that support vector regression and seasonal grey model outperforms other approaches in terms of forecast accuracy for day-ahead load forecasting.


Sign in / Sign up

Export Citation Format

Share Document