Medium- and Long-Term Predictions for Coastal Economies Based on Support Vector Regression

2019 ◽  
Vol 98 (sp1) ◽  
pp. 71 ◽  
Author(s):  
Yijie Wang
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lingyu Dong

In recent years, wireless sensor network technology has continued to develop, and it has become one of the research hotspots in the information field. People have higher and higher requirements for the communication rate and network coverage of the communication network, which also makes the problems of limited wireless mobile communication network coverage and insufficient wireless resource utilization efficiency become increasingly prominent. This article is aimed at studying a support vector regression method for long-term prediction in the context of wireless network communication and applying the method to regional economy. This article uses the contrast experiment method and the space occupancy rate algorithm, combined with the vector regression algorithm of machine learning. Research on the laws of machine learning under the premise of less sample data solves the problem of the lack of a unified framework that can be referred to in machine learning with limited samples. The experimental results show that the distance between AP1 and AP2 is 0.4 m, and the distance between AP2 and Client2 is 0.6 m. When BPSK is used for OFDM modulation, 2500 MHz is used as the USRP center frequency, and 0.5 MHz is used as the USRP bandwidth; AP1 can send data packets. The length is 100 bytes, the number of sent data packets is 100, the gain of Client2 is 0-38, the receiving gain of AP2 is 0, and the receiving gain of AP1 is 19. The support vector regression method based on wireless network communication for regional economic mid- and long-term predictions was completed well.


Author(s):  
William Mounter ◽  
Huda Dawood ◽  
Nashwan Dawood

AbstractAdvances in metering technologies and machine learning methods provide both opportunities and challenges for predicting building energy usage in the both the short and long term. However, there are minimal studies on comparing machine learning techniques in predicting building energy usage on their rolling horizon, compared with comparisons based upon a singular forecast range. With the majority of forecasts ranges being within the range of one week, due to the significant increases in error beyond short term building energy prediction. The aim of this paper is to investigate how the accuracy of building energy predictions can be improved for long term predictions, in part of a larger study into which machine learning techniques predict more accuracy within different forecast ranges. In this case study the ‘Clarendon building’ of Teesside University was selected for use in using it’s BMS data (Building Management System) to predict the building’s overall energy usage with Support Vector Regression. Examining how altering what data is used to train the models, impacts their overall accuracy. Such as by segmenting the model by building modes (Active and dormant), or by days of the week (Weekdays and weekends). Of which it was observed that modelling building weekday and weekend energy usage, lead to a reduction of 11% MAPE on average compared with unsegmented predictions.


Sign in / Sign up

Export Citation Format

Share Document