Attenuated total reflection spectrometer with terahertz free electron laser as a source

Author(s):  
V. S. Cherkassky ◽  
N. G. Gavrilov ◽  
V. V. Gerasimov ◽  
B. A. Knyazev ◽  
P. D. Rudych ◽  
...  
2016 ◽  
Vol 11 (3) ◽  
pp. 72-82
Author(s):  
Vasily Gerasimov ◽  
Elvira Grigorieva ◽  
Boris Knyazev ◽  
Yuliya Choporova

Attenuated total reflection (ATR) spectroscopy is widely used in the visible and infrared spectral ranges. Progress in the development of laboratory scale monochromatic sources of terahertz radiation, such as quantum cascade lasers, suggests that in the near future this kind of spectrometers will be widely spread in the terahertz range. For this reason, the development of ATR based methods and devices is highly relevant. In this paper, we discuss the features of the use of ATR spectroscopy in the terahertz range, and describe some of the optical systems, designed for experiments at the Novosibirsk free electron laser (NovoFEL). We show that in the terahertz range the ATR spectroscopy has a number of significant advantages over the absorption spectroscopy. As an example, we are discussing the possibility of using terahertz polarimetry to develop a method for early diagnosis of cancer via the detection of left-handed to right-handed polysaccharide enantiomers ratio. Spectra of selected polysaccharides were recorded with a standard Fourier spectrometer using developed by us an ATR unit. The possibility of studying the polarization characteristics of polysaccharides in aqueous solutions using spectrally selective polarimeter with the NovoFEL as a tunable radiation source was demonstrated.


2020 ◽  
Vol 10 (7) ◽  
pp. 2611
Author(s):  
Hirokatsu Yumoto ◽  
Yuichi Inubushi ◽  
Taito Osaka ◽  
Ichiro Inoue ◽  
Takahisa Koyama ◽  
...  

A nanofocusing optical system—referred to as 100 exa—for an X-ray free-electron laser (XFEL) was developed to generate an extremely high intensity of 100 EW/cm2 (1020 W/cm2) using total reflection mirrors. The system is based on Kirkpatrick-Baez geometry, with 250-mm-long elliptically figured mirrors optimized for the SPring-8 Angstrom Compact Free-Electron Laser (SACLA) XFEL facility. The nano-precision surface employed is coated with rhodium and offers a high reflectivity of 80%, with a photon energy of up to 12 keV, under total reflection conditions. Incident X-rays on the optics are reflected with a large spatial acceptance of over 900 μm. The focused beam is 210 nm × 120 nm (full width at half maximum) and was evaluated at a photon energy of 10 keV. The optics developed for 100 exa efficiently achieved an intensity of 1 × 1020 W/cm2 with a pulse duration of 7 fs and a pulse energy of 150 μJ (25% of the pulse energy generated at the light source). The experimental chamber, which can provide different stage arrangements and sample conditions, including vacuum environments and atmospheric-pressure helium, was set up with the focusing optics to meet the experimental requirements.


1983 ◽  
Vol 44 (C1) ◽  
pp. C1-385-C1-385
Author(s):  
E. D. Shaw ◽  
R. M. Emanuelson ◽  
G. A. Herbster

1983 ◽  
Vol 44 (C1) ◽  
pp. C1-367-C1-367
Author(s):  
W. Becker ◽  
J. K. McIver

2010 ◽  
Vol 130 (2) ◽  
pp. 209-212 ◽  
Author(s):  
Daisuke Ishizuka ◽  
Keijiro Sakai ◽  
Nobuyuki Iwata ◽  
Hirofumi Yajima ◽  
Hiroshi Yamamoto

2011 ◽  
Vol 131 (2) ◽  
pp. 68-71
Author(s):  
Etsuo FUJIWARA ◽  
Eiichi ANAYAMA ◽  
Yuichiro KATSUTA ◽  
Toshiki IZUTANI ◽  
Daichi OKUHARA ◽  
...  

2014 ◽  
Vol 134 (12) ◽  
pp. 836-839
Author(s):  
Junichi INOUE ◽  
Yuji TANAKA ◽  
Yuki MATSUMOTO ◽  
Kensuke KANDA

Sign in / Sign up

Export Citation Format

Share Document