T-S fuzzy control for fractional order Liu chaotic system with uncertain parameters

Author(s):  
Shuai Song ◽  
Xiaona Song
2019 ◽  
Vol 26 (9-10) ◽  
pp. 643-645
Author(s):  
Xuefeng Zhang

This article shows that sufficient conditions of Theorems 1–3 and the conclusions of Lemmas 1–2 for Takasi–Sugeno fuzzy model–based fractional order systems in the study “Takagi–Sugeno fuzzy control for a wide class of fractional order chaotic systems with uncertain parameters via linear matrix inequality” do not hold as asserted by the authors. The reason analysis is discussed in detail. Counterexamples are given to validate the conclusion.


2015 ◽  
Vol 11 (6) ◽  
pp. 5306-5316
Author(s):  
De-fu Kong

In this manuscript, the adaptive synchronization of a class of fractional order chaotic system with uncertain parameters is studied. Firstly, the local stability of the fractional order chaotic system is analyzed using fractional stability criterion. Then, based on the J function criterion, suitable adaptive synchronization controller and parameter identification rules of the unknown parameters are investigated. Finally, the numerical simulations are presented to verify the effectiveness and robustness of the proposed control scheme.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Fengjiao Wu ◽  
Guitao Zhang ◽  
Zhengzhong Wang

The robust fuzzy control for fractional-order hydroturbine regulating system is studied in this paper. First, the more practical fractional-order hydroturbine regulating system with uncertain parameters and random disturbances is presented. Then, on the basis of interval matrix theory and fractional-order stability theorem, a fuzzy control method is proposed for fractional-order hydroturbine regulating system, and the stability condition is expressed as a group of linear matrix inequalities. Furthermore, the proposed method has good robustness which can process external random disturbances and uncertain parameters. Finally, the validity and superiority are proved by the numerical simulations.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sukono ◽  
Aceng Sambas ◽  
Shaobo He ◽  
Heng Liu ◽  
Sundarapandian Vaidyanathan ◽  
...  

AbstractIn this paper, a fractional-order model of a financial risk dynamical system is proposed and the complex behavior of such a system is presented. The basic dynamical behavior of this financial risk dynamic system, such as chaotic attractor, Lyapunov exponents, and bifurcation analysis, is investigated. We find that numerical results display periodic behavior and chaotic behavior of the system. The results of theoretical models and numerical simulation are helpful for better understanding of other similar nonlinear financial risk dynamic systems. Furthermore, the adaptive fuzzy control for the fractional-order financial risk chaotic system is investigated on the fractional Lyapunov stability criterion. Finally, numerical simulation is given to confirm the effectiveness of the proposed method.


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 49
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed ◽  
Bilal Naji Alhasnawi

In this paper, a new fractional order chaotic system without equilibrium is proposed, analytically and numerically investigated, and numerically and experimentally tested. The analytical and numerical investigations were used to describe the system’s dynamical behaviors including the system equilibria, the chaotic attractors, the bifurcation diagrams, and the Lyapunov exponents. Based on the obtained dynamical behaviors, the system can excite hidden chaotic attractors since it has no equilibrium. Then, a synchronization mechanism based on the adaptive control theory was developed between two identical new systems (master and slave). The adaptive control laws are derived based on synchronization error dynamics of the state variables for the master and slave. Consequently, the update laws of the slave parameters are obtained, where the slave parameters are assumed to be uncertain and are estimated corresponding to the master parameters by the synchronization process. Furthermore, Arduino Due boards were used to implement the proposed system in order to demonstrate its practicality in real-world applications. The simulation experimental results were obtained by MATLAB and the Arduino Due boards, respectively, with a good consistency between the simulation results and the experimental results, indicating that the new fractional order chaotic system is capable of being employed in real-world applications.


Sign in / Sign up

Export Citation Format

Share Document