Cloud based Acute Lymphoblastic Leukemia Detection Using Deep Convolutional Neural Networks

Author(s):  
Sankara Nayaki K. ◽  
Jincy Denny ◽  
M.M. Rubeena ◽  
Jees K Denny
Author(s):  
Chayan Mondal ◽  
Md. Kamrul Hasan ◽  
Md. Tasnim Jawad ◽  
Aishwariya Dutta ◽  
Md. Rabiul Islam ◽  
...  

Although automated Acute Lymphoblastic Leukemia (ALL) detection is essential, it is challenging due to the morphological correlation between malignant and normal cells. The traditional ALL classification strategy is arduous, time-consuming, often suffers inter-observer variations, and necessitates experienced pathologists. This article has automated the ALL detection task, employing deep Convolutional Neural Networks (CNNs). We explore the weighted ensemble of deep CNNs to recommend a better ALL cell classifier. The weights are estimated from ensemble candidates' corresponding metrics, such as accuracy, F1-score, AUC, and kappa values. Various data augmentations and pre-processing are incorporated for achieving a better generalization of the network. We train and evaluate the proposed model utilizing the publicly available C-NMC-2019 ALL dataset. Our proposed weighted ensemble model has outputted a weighted F1-score of 88.6%, a balanced accuracy of 86.2%, and an AUC of 0.941 in the preliminary test set. The qualitative results displaying the gradient class activation maps confirm that the introduced model has a concentrated learned region. In contrast, the ensemble candidate models, such as Xception, VGG-16, DenseNet-121, MobileNet, and InceptionResNet-V2, separately produce coarse and scatter learned areas for most example cases. Since the proposed ensemble yields a better result for the aimed task, it can experiment in other domains of medical diagnostic applications.


2021 ◽  
pp. 100794
Author(s):  
Chayan Mondal ◽  
Md. Kamrul Hasan ◽  
Mohiuddin Ahmad ◽  
Md. Abdul Awal ◽  
Md. Tasnim Jawad ◽  
...  

2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


Sign in / Sign up

Export Citation Format

Share Document