Vigorous algorithms to control urban vehicle traffic

Author(s):  
Abdul Mateen ◽  
Adia Khalid ◽  
Lal Khan ◽  
Sehrish Majeed ◽  
Tooba Akhtar
Keyword(s):  
2017 ◽  
Vol 13 (5) ◽  
pp. 467-490 ◽  
Author(s):  
Weibin Zhang ◽  
Yong Qi ◽  
Kristian Henrickson ◽  
Jinjun Tang ◽  
Yinhai Wang

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Rakesh Shrestha ◽  
Rojeena Bajracharya ◽  
Shiho Kim

2021 ◽  
Vol 11 (1) ◽  
pp. 365-376
Author(s):  
Andrzej Bąkowski ◽  
Leszek Radziszewski

Abstract The study analyzed the parameters of vehicle traffic and noise on the national road in the section in the city from 2011 to 2016. In 2013–2014 this road was reconstructed. It was found that in most cases, the distribution of the tested variable was not normal. The median and selected percentiles of vehicle traffic parameters and noise were examined. The variability and type A uncertainty of the results were described and evaluated. The results obtained for the data recorded on working and non-working days were compared. The vehicle cumulative speed distributions, for two-way four-lane road segments in both directions were analyzed. A mathematical model of normalized traffic flow has been proposed. Fit factor R2 of the proposed equations to the experimental data for passenger vehicles ranges from 0.93 to 0.99. It has been shown that two years after the road reconstruction, the median noise level did not increase even though traffic volumes and vehicle speeds increased. The Cnossos noise model was validated for data recorded over a period of 6 years. A very good agreement of the medians determined according to the Cnossos-EU model and the measured ones was obtained. It should be noted, however, that for the other analyzed percentiles, e.g. 95%, the discrepancies are larger.


2018 ◽  
Vol 64 (No. 7) ◽  
pp. 296-302 ◽  
Author(s):  
Dini Morteza ◽  
Nikooy Mehrdad ◽  
Naskovets Michael Trofimovich ◽  
Ghomi Alireza

In this research, the results of an experimental survey on the measurement of vertical stresses are presented. Four treatments were used in this study such as combination of geotextile vertical and horizontal structure with dimensions of 5 × 5 and 10 × 10 cm, horizontal geotextile and the treatment without geotextile. Five sensors were installed in different hole locations and the lead of the truck traffic was transmitted by cables to data logging and recording devices to measure the pressure from vehicle traffic on the simulated pavement layer. Mean comparison of the treatments showed that the geotextile with vertical and horizontal structure and dimensions of 5 × 5 cm exerted the lowest pressure on the lower layers compared with the other treatments and there was a significant difference between the value of this treatment and the other treatments and that this treatment could significantly reduce the pressure of truck traffic on the forest road.


Sign in / Sign up

Export Citation Format

Share Document