An Investigation into the Effect of the Probabilistic Distribution of Lightning Current Amplitude on a Transmission Line Backflashover Rate

Author(s):  
Daiane Conceicao ◽  
Ivan J. S. Lopes ◽  
Rafael Alipio
2020 ◽  
Vol 10 (6) ◽  
pp. 2147
Author(s):  
Jian Chen ◽  
Xiaolei Bi ◽  
Juan Liu ◽  
Zhengcai Fu

The damage induced by lightning strikes in carbon-fiber-reinforced plastic (CFRP) laminates with fasteners is a complex multiphysics coupling process. To clarify the effects of different lightning current components on the induced damage, components C and D were used in simulated lightning strike tests. Ultrasonic C-scans and stereomicroscopy were used to evaluate the damage in the tested specimens. In addition, the electrothermal coupling theory was adopted to model the different effects of the arc and the current flowing through the laminate (hereinafter referred to as the conduction current) on CFRP laminates with fasteners under different lightning current components. Component C, which has a low current amplitude and a long duration, ablated and gasified the fastener and caused less damage to the CFRP laminate. Under component C, the heat produced by the arc played a leading role in damage generation. Component D, which has a high current amplitude and a short duration, caused serious surface and internal damage in the CFRP laminate and little damage to the fastener. Under component D, the damage was mainly caused by the Joule heat generated by the conduction current.


2021 ◽  
Vol 3 (44) ◽  
pp. 37-47
Author(s):  
Sergey V. Vendin ◽  
◽  
Sergey V. Solov’ev ◽  
Stanislav V. Kilin ◽  
Aleksey O. Yakovlev

The grounding of the supports determines the resistive, the most significant component of the overvoltage acting on the insulation gap between the lightning rod and the equipment of the electrical substation when lightning strikes the lightning rod. (Research purpose) The research purpose is in developing recommendations for the grounding devices for lightning rod supports and means of suppressing sliding spark channels in a multi-wire system. (Materials and methods) The estimation of the share of lightning current in the grounding conductor of the lightning rod support can be calculated simplistically. This makes it possible to abandon the solution of long-line wave equations and switch to a substitution scheme with concentrated parameters, in which the active and inductive resistances of sections of an electric circuit loaded with lightning current should be considered, with mandatory consideration of inductive connections between them. (Results and discussion) The article presents the calculation for a pulse with an oblique front and a flat head, which is traditionally used to estimate the number of reverse overlaps on an overhead power transmission line when a lightning strike hit a support. It was assumed that the lightning strike occurred in the extreme thunderstorm, the current load mode of which is the least favorable. The greatest current load of the grounding conductor of the support corresponds to a direct lightning strike, when the current amplitude there differs from the current amplitude of the first component in the lightning channel by no more than 25 percent, this mode should be taken as the calculated one when estimating the maximum length of the sliding spark channel. (Conclusions) The maximum lengths of sliding spark channels in soils of different conductivity were determined using computer modeling of an emergency situation of a lightning strike, provided that the reinforced concrete foundations of the lightning rod supports connected by an underground horizontal bus are used as grounding conductors of lightning rods. The most effective means of limiting the danger of sliding spark channels is their forced orientation to the side, which is safe for the grounding circuit of an electric substation.


2020 ◽  
Vol 69 (2) ◽  
pp. 11-18
Author(s):  
Goran Levačić ◽  
Alain Xémard ◽  
Miroslav Mesić

For the selection and design of line surge arresters (LSA), it is essential to know the characteristics of the lightning current circulating through LSA. When lightning strikes a transmission line, only a part of the lightning current circulates through LSA.This part mostly depends on the point of impact, and the characteristic of the lightning stroke current. The determination of the cumulative distribution function of the lightning current circulating through arresters is presented in first part of the paper. It can be applied on transmission lines where LSAs will be installed to protect the line against the effect of atmospheric discharges.Second part of paper presents the calculation results of the cumulative distribution function of the lightning current circulating through arresters for particular 110 kV transmission line located in an area with high lightning activity.


2021 ◽  
Vol 3 (1(59)) ◽  
pp. 34-39
Author(s):  
Yevgeniy Trotsenko ◽  
Mandar Madhukar Dixit ◽  
Volodymyr Brzhezitsky ◽  
Yaroslav Haran

The object of research is a circuit that simulates a lightning strike to a tower of 220 kV power transmission line, taking into consideration the reflection of a current wave from 10 nearest towers. Computation of the voltage arising at the top of the struck tower is necessary further to determine the lightning performance of transmission line by various methods. The lightning current has several maxima, in the case of a positive impulse polarity and, accordingly, several minima, in the case of a negative polarity, which are generally being called peaks. In addition, the lightning current impulse has a non-constant steepness in the entire area of current rise up to the first peak. The approximation of the real lightning current by simplified mathematical expressions cannot take into account all its real features. For a more detailed study of transient processes caused by thunderstorm activity, there is a need to use oscillograms of real lightning currents when modeling. The problem of determining the voltage at the top of the stricken transmission line tower was solved using circuit simulation. For an in-depth study of how the shape of the lightning current impulse affects the shape of the voltage at the top of the tower struck, digitized oscillograms of real lightning currents were used. The simulation was carried out for 7 negative lightning impulses with the first peak varying from –33.380 kA to –74.188 kA. In the case of positive lightning, 3 oscillograms were used with the first peak varying from +38.461 kA to +41.012 kA. The article shows that the shape of the front of the lightning current impulse and the amplitude of the first peak of the lightning current have a decisive effect on the maximum voltage value at the top of a power transmission line tower struck by lightning. The maximum voltage occurs precisely at the front of the current wave before the first peak of the lightning current. Therefore, the back flashover of the insulation from the tower to the phase conductor is most likely at a moment in time at the front of the current wave. By the time the maximum current is reached, the voltage at the top of the tower will be reduced by several tens of percent, compared to the maximum voltage at the tower, which occurs much earlier at the front of the current wave. The conducted research contributes to the development of methods for calculating the lightning performance of power lines and extends the scope of application of circuit simulation programs.


Sign in / Sign up

Export Citation Format

Share Document