Integrated vehicle dynamics control through coordinating electronic stability program and active suspension system

Author(s):  
Hansong Xia ◽  
Wuwei Chen ◽  
Huihui Zhou ◽  
Jean W. Zu
2013 ◽  
Vol 765-767 ◽  
pp. 382-386
Author(s):  
Jian Kun Peng ◽  
Hong Wen He ◽  
Bing Lu

A 7-DOFs vehicle dynamics model which includes active suspension system (ASS) is established, and a LQR controller for active suspension system was designed based on optimal control theory. The simulation models for active suspension system and passive suspension system were built, and a simulation experiment was carried out with MATLAB/Simulink Software. The simulation results show that the optimal control of active suspension system can reduce vertical, roll and pitch accelerations of sprung mass, and the vehicle ride comfort and handling stability were improved effectively.


Author(s):  
Gerhardus S. Heymans ◽  
Jacob F. Grobler ◽  
P. Schalk Els

The Vehicle Dynamics Group (VDG) at the University of Pretoria has developed a semi-active hydro-pneumatic suspension system for an off road vehicle. The suspension system can switch its characteristics between two discrete spring characteristics as well as two discrete damping characteristics all incorporated in a single suspension strut. This original 4-State Semi-active Suspension System (or 4S4), switches between discrete characteristics through the control a set of solenoid valves. Recently, the 4S4 was further developed with the aim of extending its damping characteristics to be continuously variable through the use of Magneto-rheological (MR) technology. The newly developed MR4S4 prototype received a re-designed flow path which channels the MR suspension fluid through two independent magnetic valves (flow orifice enclosed by coils) in parallel. The damping characteristics of each of the valves are controlled independently by the application of electric currents through damper coils. These valves are also able to block flow completely to achieve the discrete spring characteristics through switching flow to the independent accumulators. However, in order to ensure that this new technology could be effectively applied and controlled a model of the MR4S4 needed to be developed. This paper describes the development and validation of a physics based model which is able to capture the overall dynamics and properties of the MR4S4 suspension system. Importantly, the aim of the research was to appropriately capture the physical properties of both the gas as well as the MR fluid as it interacts with the suspension displacements and forces. This model would aid further research in the development of control strategies and provide insight through simulation studies on the systems’ influence on vehicle dynamics.


Author(s):  
Zhang Rongyun ◽  
Shi Peicheng ◽  
Zhao Linfeng ◽  
Gao Zhengang

The stabilities of the handling and rollover are the two important performance of the vehicle and play an important role in vehicle safe driving. Focusing on improving the handling and rollover stabilities, a new approach to realize the coordinated control of the electronic stability program and the active suspension system is proposed. The vehicle model including the active suspension system has been built. The distance between vehicle centroid and the front and rear axles is estimated by the forgetting factor recursion least squares method on the basis of the vertical motion of the vehicle. The parameter self-tuning fuzzy proportional–integral–derivative control of the electronic stability program is adopted and the 2-degree-of-freedom vehicle model considering the changes of the distance between vehicle centroid and the front and rear axles is treated as the reference model. The active suspension system controller is designed according to the different functions of the active suspension system in different vehicle status areas. The function allocation controller is also designed using multi-objective fuzzy decision, which is used to realize the allocation control of the active suspension system and electronic stability program. Under the double-lane change conditions, the function allocation control has been simulated based on MATLAB/Simulink software, which results indicate that the function allocation control strategy of electronic stability program and active suspension system can significantly improve the manipulation and rollover stability of the vehicle at a high speed under emergency steering. Finally, the function allocation controller is installed to the active suspension system and electronic stability program hardware-in-loop test platform, and the hardware-in-loop test has been done, which results are consistent with the results of simulation.


Author(s):  
Jeongwoo Lee ◽  
Kwangseok Oh ◽  
Kyongsu Yi

This paper presents a novel design and control method of an active suspension system using a linear pump control–based hydraulic system for a cost-effective application. Various active suspension systems have been proposed and applied to vehicles due to its ability to improve ride comfort and handling performance even though these active suspension systems are not popular because of their complexity, high cost, heavyweight, and low power efficiency. A new type of active suspension actuator system was designed and validated herein based on the methods of actuator sizing and modified control scheme to address the aforementioned issues. System power capability has been analyzed under various dynamics and road conditions. Active suspension actuator components have been designed based on the results. The electro-hydraulic system is powered by a battery to reduce the energy consumption of the system; hence, it is operated by torque on demand. A double-acting linear hydraulic motor pump with a dual rack and pinion has been proposed for hydraulic force control with a simple on/off switch operation. The actuator force has been controlled by continuous linear motor pump displacement control via torque control using a three-phase synchronous brushless alternative current motor. Dynamic performance evaluation of the actuator system has been conducted using AMESIM and actual rig test. Active height and roll control algorithms for the enhancement of vehicle dynamics considering actuator dynamics have also been developed and validated through the rig and real vehicle tests. The evaluation results showed that the linear motor pump–based active suspension system performs as well as the previous complicated hydraulic active suspension system. The new active system proposed in this study was able to improve the vehicle dynamics using cost-effective actuation system significantly.


Sign in / Sign up

Export Citation Format

Share Document