A novel approach to design and control of an active suspension using linear pump control–based hydraulic system

Author(s):  
Jeongwoo Lee ◽  
Kwangseok Oh ◽  
Kyongsu Yi

This paper presents a novel design and control method of an active suspension system using a linear pump control–based hydraulic system for a cost-effective application. Various active suspension systems have been proposed and applied to vehicles due to its ability to improve ride comfort and handling performance even though these active suspension systems are not popular because of their complexity, high cost, heavyweight, and low power efficiency. A new type of active suspension actuator system was designed and validated herein based on the methods of actuator sizing and modified control scheme to address the aforementioned issues. System power capability has been analyzed under various dynamics and road conditions. Active suspension actuator components have been designed based on the results. The electro-hydraulic system is powered by a battery to reduce the energy consumption of the system; hence, it is operated by torque on demand. A double-acting linear hydraulic motor pump with a dual rack and pinion has been proposed for hydraulic force control with a simple on/off switch operation. The actuator force has been controlled by continuous linear motor pump displacement control via torque control using a three-phase synchronous brushless alternative current motor. Dynamic performance evaluation of the actuator system has been conducted using AMESIM and actual rig test. Active height and roll control algorithms for the enhancement of vehicle dynamics considering actuator dynamics have also been developed and validated through the rig and real vehicle tests. The evaluation results showed that the linear motor pump–based active suspension system performs as well as the previous complicated hydraulic active suspension system. The new active system proposed in this study was able to improve the vehicle dynamics using cost-effective actuation system significantly.

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1286
Author(s):  
Ayman Aljarbouh ◽  
Muhammad Fayaz

Rigorous model-based design and control for intelligent vehicle suspension systems play an important role in providing better driving characteristics such as passenger comfort and road-holding capability. This paper investigates a new technique for modelling, simulation and control of semi-active suspension systems supporting both ride comfort and road-holding driving characteristics and implements the technique in accordance with the functional mock-up interface standard FMI 2.0. Firstly, we provide a control-oriented hybrid model of a quarter car semi-active suspension system. The resulting quarter car hybrid model is used to develop a sliding mode controller that supports both ride comfort and road-holding capability. Both the hybrid model and controller are then implemented conforming to the functional mock-up interface standard FMI 2.0. The aim of the FMI-based implementation is to serve as a portable test bench for control applications of vehicle suspension systems. It fully supports the exchange of the suspension system components as functional mock-up units (FMUs) among different modelling and simulation platforms, which allows re-usability and facilitates the interoperation and integration of the suspension system components with embedded software components. The concepts are validated with simulation results throughout the paper.


2019 ◽  
Vol 26 (11-12) ◽  
pp. 952-964 ◽  
Author(s):  
Wu Qin ◽  
Wen-Bin Shangguan ◽  
Kegang Zhao

Based on a nonlinear two-degree-of-freedom model of active suspension systems, an approach of the sliding mode control with disturbance observer combining skyhook model sliding mode control with disturbance observer combining is proposed for improving the performance of active suspension systems, and the effectiveness of the proposed approach is validated by the active suspension system plant. Two problems of active suspension systems are solved by using the proposed approach when the tire is excited by the step displacement. One problem is that the suspension deflection of active suspension systems, i.e. the difference between the sprung mass displacement and the unsprung mass displacement, using conventional sliding mode control with disturbance observer not converges to zero in finite time, and the phenomenon of the impact of suspension against the limit block is produced. This problem is solved by providing a reference value of the sprung mass displacement in an active suspension system, which is obtained from the skyhook model. The other problem is that disturbances exist in active suspension systems, which are caused by the inaccurate parameters of stiffness and damping. This problem is solved by designing a disturbance observer to estimate the summation of the disturbances. Finally, the performance indexes of the active suspension system with the sliding mode control with disturbance observer combining skyhook model are calculated and compared with those of using the conventional sliding mode control with disturbance observer and the linear quadratic regulator approach.


1979 ◽  
Vol 101 (4) ◽  
pp. 321-331
Author(s):  
L. M. Sweet ◽  
H. C. Curtiss ◽  
R. A. Luhrs

A linearized model of the pitch-heave dynamics of a Tracked Ram Air Cushion Vehicle is presented. This model is based on aerodynamic theory which has been verified by wind tunnel and towed model experiments. The vehicle is assumed to be equipped with two controls which can be configured to provide various suspension system characteristics. The ride quality and dynamic motions of the fixed winglet vehicle moving at 330 km/hr over a guideway described by roughness characteristics typical of highways is examined in terms of the rms values of the vertical acceleration in the foremost and rearmost seats in the passenger cabin and the gap variations at the leading and trailing edges of the vehicle. The improvement in ride quality and dynamic behavior which can be obtained by passive and active suspension systems is examined and discussed. Optimal regulator theory is employed to design the active suspension system. The predicted rms values of the vertical acceleration in the one-third octave frequency bands are compared with the vertical ISO Specifications. It is shown that marked improvements in the ride quality can be obtained with either the passive or active suspension systems.


Author(s):  
Amit Shukla

Design of active suspension systems is well known, however the notion of control bifurcations for the design of such systems has been introduced recently. A nonlinear active suspension system consisting of a magneto-rheological damper is analyzed in this work. It is well known that a parameterized nonlinear differential equation can have multiple equilibria as the parameter is varied. A local bifurcation of a parameterized nonlinear system typically happens because some eigenvalues of the parameterized linear approximating differential equation cross the imaginary axis and there is a change in stability of the equilibrium. The qualitative change in the equilibrium point can be characterized by investigating the projection of the flow on the center manifold. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. In this work the control bifurcations of a magneto-rheological fluid based active suspension system is analyzed. Some parametric results are presented with suggestions on how to design nonlinear control based on the parametric control bifurcation analysis as applied to the design of an active suspension system.


Author(s):  
Vikas Prasad ◽  
P. Seshu ◽  
Dnyanesh N. Pawaskar

Abstract In this paper, the design of the suspension system for Heavy Goods Vehicles (HGV) is proposed, which deals with two performance criteria simultaneously. A semi-tractor trailer is used in present work and modeled with half vehicle model. Four types of linear, as well as non-linear, passive and semi-active suspension systems, are presented in this work. The control law is proposed for the semi-active suspension system using a PID controller to remove the need for passive damper along with active damper. Two objective optimization is performed using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Road Damage (RD) is taken as the first objective along with Goods Damage (GD) as the second objective. All problems are minimization problems. It is concluded based on Pareto front comparison of different suspension systems that the semi-active suspension system with the proposed control law performs well for HGV.


Author(s):  
E.M Allam ◽  
M.A.A Emam ◽  
Eid.S Mohamed

This paper presents the effect of the suspension working space, body displacement, body acceleration and wheel displacement for the non-controlled suspension system (passive system) and the controlled suspension system of a quarter car model (semi-active system), and comparison between them. The quarter car passive and semi-active suspension systems are modelled using Simulink. Proportional Integral Derivative controllers are incorporated in the design scheme of semi-active models. In the experimental work, the influence of switchable damper in a suspension system is compared with the passive and semi-active suspension systems.


1991 ◽  
Vol 113 (1) ◽  
pp. 134-137 ◽  
Author(s):  
J. A. Levitt ◽  
N. G. Zorka

Setting tire damping to zero when modeling automotive active suspension systems compels the misleading conclusions that, at the wheelhop frequency, no matter what forces are exerted between sprung and unsprung masses, their motion are uncoupled, and the vertical acceleration of the sprung mass will be unaffected. Alternatively, taking tire damping to be small but nonzero, the motions of the sprung and unsprung masses are coupled at all frequencies, and control forces can be used to reduce the sprung mass vertical acceleration at the wheelhop frequency. The effect of introducing tire damping can be quite large. In the case of a force law chosen to enhance ride along a straight smooth road, where road holding is not a major concern, setting the tire damping ratio to 0.02 reduces rms body acceleration by 30 percent.


Sign in / Sign up

Export Citation Format

Share Document