Trajectory and Attitude Measurement of Skier based on MINS/UWB Integration for Indoor Intelligent Skiing System

Author(s):  
Xiaodan Cong ◽  
Hongpeng Guo ◽  
Jinliang Ruan ◽  
Lianwu Guan ◽  
Yanbin Gao
Keyword(s):  
Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 402
Author(s):  
Ning Liu ◽  
Tianqi Tian ◽  
Zhong Su ◽  
Wenhao Qi

This paper studies the measurement of motion parameters of a parachute scanning platform. The movement of a parachute scanning platform has fast rotational velocity and a complex attitude. Therefore, traditional measurement methods cannot measure the motion parameters accurately, and thus fail to satisfy the requirements for the measurement of parachute scanning platform motion parameters. In order to solve these problems, a method for measuring the motion parameters of a parachute scanning platform based on a combination of magnetic and inertial sensors is proposed in this paper. First, scanning motion characteristics of a parachute-terminal-sensitive projectile are analyzed. Next, a high-precision parachute scanning platform attitude measurement device is designed to obtain the data of magnetic and inertial sensors. Then the extended Kalman filter is used to filter and observe errors. The scanning angle, the scanning angle velocity, the falling velocity, and the 2D scanning attitude are obtained. Finally, the accuracy and feasibility of the algorithm are analyzed and validated by MATLAB simulation, semi-physical simulation, and airdrop experiments. The presented research results can provide helpful references for the design and analysis of parachute scanning platforms, which can reduce development time and cost.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3011
Author(s):  
Yi Yang ◽  
Fei Li ◽  
Nan Zhang ◽  
Aiqing Huo

In the process of drilling, severe downhole vibration causes attitude measurement sensors to be erroneous; the errors will accumulate gradually during the inclination calculation. As a result, the ultimate well path could deviate away from the planned trajectory. In order to solve this problem, this paper utilized the stochastic resonance (SR) and chaos phase transition (CPT) produced by the second-order Duffing system to identify the frequency and estimate the parameters of the signal during measurement while drilling. Firstly, the idea of a variable-scale is introduced in order to reconstruct the frequency of the attitude measurement signal, and an SR frequency detection model based on a scale transformation Duffing system is established in order to meet the frequency limit condition of the SR. Then, an attitude measurement signal with a known frequency value is input into the Duffing chaos system, and the scale transformation is used again to make the frequency value meet the parameter requirement of chaos detection. Finally, two Duffing oscillators with different initial phases of their driving signal are combined in order to estimate the amplitude and phase parameters of the measurement signal by using their CPT characteristics. The results of the laboratory test and the field-drilling data demonstrated that the proposed algorithm has good immunity to the interference noise in the attitude measurement sensor, improving the solution accuracy of the inclination in a severe noise environment and thus ensuring the dynamic stability of the well trajectory.


2010 ◽  
Vol 450 ◽  
pp. 552-555
Author(s):  
Ping Wang ◽  
Kai Xue ◽  
Qiu Hong Li

GPS attitude tracking system on the ship is a servo mechanism which could be used for counteracting the effects of the ship’s pitch and roll. But the attitude measurement precision of ship is more important to the tracking precision of the servo mechanism. As one of the major error sources, the noises of GPS attitude measurement bring out the steady tracking error of the tracking servo mechanism. To reduce the steady error due to the noise, the threshold noise removing method of wavelet is used to eliminate the noise. And the better result with the meaning of standard deviation and the better visual effects could be gotten by using the method. The signals of the processed high frequency and the retained low frequency could be reconstructed with the original signals. Therefore, the signals after noise removing could be obtained. The threshold noise removing method of wavelet used to remove the noise of GPS attitude information in the paper is of great value in practice.


Sign in / Sign up

Export Citation Format

Share Document