Reaction force estimation of piezoelectric actuator by charge observation

Author(s):  
S. Yamaoka ◽  
K. Ohnishi
Author(s):  
Seyed Fakoorian ◽  
Vahid Azimi ◽  
Mahmoud Moosavi ◽  
Hanz Richter ◽  
Dan Simon

A method to estimate ground reaction forces (GRFs) in a robot/prosthesis system is presented. The system includes a robot that emulates human hip and thigh motion, along with a powered (active) transfemoral prosthetic leg. We design a continuous-time extended Kalman filter (EKF) and a continuous-time unscented Kalman filter (UKF) to estimate not only the states of the robot/prosthesis system but also the GRFs that act on the foot. It is proven using stochastic Lyapunov functions that the estimation error of the EKF is exponentially bounded if the initial estimation errors and the disturbances are sufficiently small. The performance of the estimators in normal walk, fast walk, and slow walk is studied, when we use four sensors (hip displacement, thigh, knee, and ankle angles), three sensors (thigh, knee, and ankle angles), and two sensors (knee and ankle angles). Simulation results show that when using four sensors, the average root-mean-square (RMS) estimation error of the EKF is 0.0020 rad for the joint angles and 11.85 N for the GRFs. The respective numbers for the UKF are 0.0016 rad and 7.98 N, which are 20% and 33% lower than those of the EKF.


1996 ◽  
Vol 8 (3) ◽  
pp. 226-234
Author(s):  
Kiyoshi Ohishi ◽  
◽  
Masaru Miyazaki ◽  
Masahiro Fujita ◽  

Generally, hybrid control is realized by sensor signal feedback of position and force. However, some robot manipulators do not have a force sensor due to the environment. Moreover, a precise force sensor is very expensive. In order to overcome these problems, we propose the estimation system of reaction force without using a force sensor. This system consists of the torque observer and the inverse dynamics calculation. Using both this force estimation system and <I>H</I>∞ acceleration controller which is based on <I>H</I>∞ control theory, it takes into account the frequency characteristics of both sensor noise effect and disturbance rejection. The experimental results in this paper illustrate the fine hybrid control of the three tested degrees-of-freedom DD robot manipulator without force sensor.


2005 ◽  
Vol 2005.43 (0) ◽  
pp. 67-68
Author(s):  
Yohei YAMASAKI ◽  
Yoshio INOUE ◽  
Kyoko SHIBATA ◽  
Takuya MATSUDA ◽  
Hiroki TAMURA

2018 ◽  
Vol 84 (865) ◽  
pp. 18-00215-18-00215 ◽  
Author(s):  
Motohiko TAKAHASHI ◽  
Ryoji ONODERA ◽  
Junji KATSUHIRA ◽  
Ryotaro HONTE ◽  
Koutaro TERADA ◽  
...  

2019 ◽  
Vol 11 (sup1) ◽  
pp. S77-S78
Author(s):  
Francesca d'Andrea ◽  
Ben Heller ◽  
David James ◽  
Harald Koerger ◽  
Marcus Dunn

Sign in / Sign up

Export Citation Format

Share Document